Knockout of the Staphylococcus aureus virulence gene sdrC promotes Myh7 expression to inhibit the progression of osteomyelitis.

IF 2.2 4区 生物学 Q3 CELL BIOLOGY
Baochuang Qi, Lili Yang, Xinyu Fan, Dongdong Qin, Jiming Gan, Tao Chen, Yu Rao, Zhongyu Peng, Longjun Su, Chuan Li, Yongqing Xu
{"title":"Knockout of the Staphylococcus aureus virulence gene sdrC promotes Myh7 expression to inhibit the progression of osteomyelitis.","authors":"Baochuang Qi, Lili Yang, Xinyu Fan, Dongdong Qin, Jiming Gan, Tao Chen, Yu Rao, Zhongyu Peng, Longjun Su, Chuan Li, Yongqing Xu","doi":"10.1007/s10735-025-10447-x","DOIUrl":null,"url":null,"abstract":"<p><p>The incidence of osteomyelitis has been increasing annually, but the specific molecular pathogenesis of Staphylococcus aureus-induced osteomyelitis is unclear. The SdrC protein facilitates Staphylococcus aureus adhesion and colonization, thereby promoting subsequent biofilm accumulation and contributing to the progression of osteomyelitis. The role of SdrC, an important protein in S. aureus, in the progression of S. aureus-induced osteomyelitis requires further elucidation. Thus, we aimed to determine whether targeting SdrC is a novel strategy for treating S. aureus-induced osteomyelitis. The sdrC sequence of S. aureus was knocked out, and rat models with wild-type and sdrC knockout (KO) S. aureus-induced osteomyelitis were established. Enzyme-linked immunosorbent assays (ELISAs) were used to identify differences in the levels of the inflammatory factors IL-6 and TNF-α, and qPCR and Western blotting were used to identify changes in the levels of osteogenic indicators, such as ALP, OST and Runx2; these experiments analyzed the role of SdrC in the progression of S. aureus-induced osteomyelitis. Transcriptomic sequencing was used to explore the mechanism by which SdrC promotes the development of S. aureus-induced osteomyelitis at the molecular level. After the SdrC protein of S. aureus was knocked out, biofilm formation significantly decreased. Compared with the control group, The sdrC-KO osteomyelitis group showed milder bone tissue inflammation compared to the control group, and the expression of the inflammatory factors IL-6 and TNF-α decreased significantly (p < 0.05), whereas the expression of the osteogenic indicators ALP, OST, and Runx2 increased significantly, as shown by qPCR and Western blotting (p < 0.05). Alkaline phosphatase and alizarin red staining showed that knocking out SdrC increased ossification in rats and improved their prognosis. Transcriptomic sequencing revealed that Myh7 was significantly overexpressed in the sdrC-KO rats with osteomyelitis (p < 0.05). Knocking out Myh7 significantly reduced the mRNA and protein levels of osteogenic markers Runx2, ALP, Osterix (OSX), and osteocalcin (p < 0.05), suggesting that Myh7 inhibits the function of the S. aureus SdrC protein. The SdrC protein in S. aureus promotes the malignant progression of osteomyelitis and exacerbates the development of osteomyelitis by promoting S. aureus biofilms. Moreover, Myh7 hinders the ability of SdrC to promote biofilm formation, reducing the progression of osteomyelitis; these findings suggest that targeting SdrC or enhancing Myh7 expression could serve as a novel therapeutic strategyjbr osteomyelitis treatment.</p>","PeriodicalId":650,"journal":{"name":"Journal of Molecular Histology","volume":"56 3","pages":"185"},"PeriodicalIF":2.2000,"publicationDate":"2025-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Histology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10735-025-10447-x","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The incidence of osteomyelitis has been increasing annually, but the specific molecular pathogenesis of Staphylococcus aureus-induced osteomyelitis is unclear. The SdrC protein facilitates Staphylococcus aureus adhesion and colonization, thereby promoting subsequent biofilm accumulation and contributing to the progression of osteomyelitis. The role of SdrC, an important protein in S. aureus, in the progression of S. aureus-induced osteomyelitis requires further elucidation. Thus, we aimed to determine whether targeting SdrC is a novel strategy for treating S. aureus-induced osteomyelitis. The sdrC sequence of S. aureus was knocked out, and rat models with wild-type and sdrC knockout (KO) S. aureus-induced osteomyelitis were established. Enzyme-linked immunosorbent assays (ELISAs) were used to identify differences in the levels of the inflammatory factors IL-6 and TNF-α, and qPCR and Western blotting were used to identify changes in the levels of osteogenic indicators, such as ALP, OST and Runx2; these experiments analyzed the role of SdrC in the progression of S. aureus-induced osteomyelitis. Transcriptomic sequencing was used to explore the mechanism by which SdrC promotes the development of S. aureus-induced osteomyelitis at the molecular level. After the SdrC protein of S. aureus was knocked out, biofilm formation significantly decreased. Compared with the control group, The sdrC-KO osteomyelitis group showed milder bone tissue inflammation compared to the control group, and the expression of the inflammatory factors IL-6 and TNF-α decreased significantly (p < 0.05), whereas the expression of the osteogenic indicators ALP, OST, and Runx2 increased significantly, as shown by qPCR and Western blotting (p < 0.05). Alkaline phosphatase and alizarin red staining showed that knocking out SdrC increased ossification in rats and improved their prognosis. Transcriptomic sequencing revealed that Myh7 was significantly overexpressed in the sdrC-KO rats with osteomyelitis (p < 0.05). Knocking out Myh7 significantly reduced the mRNA and protein levels of osteogenic markers Runx2, ALP, Osterix (OSX), and osteocalcin (p < 0.05), suggesting that Myh7 inhibits the function of the S. aureus SdrC protein. The SdrC protein in S. aureus promotes the malignant progression of osteomyelitis and exacerbates the development of osteomyelitis by promoting S. aureus biofilms. Moreover, Myh7 hinders the ability of SdrC to promote biofilm formation, reducing the progression of osteomyelitis; these findings suggest that targeting SdrC or enhancing Myh7 expression could serve as a novel therapeutic strategyjbr osteomyelitis treatment.

敲除金黄色葡萄球菌毒力基因sdrC可促进Myh7表达,从而抑制骨髓炎的进展。
骨髓炎的发病率逐年上升,但金黄色葡萄球菌引起的骨髓炎的具体分子发病机制尚不清楚。SdrC蛋白促进金黄色葡萄球菌的粘附和定植,从而促进随后的生物膜积累,促进骨髓炎的进展。SdrC是金黄色葡萄球菌中一种重要的蛋白,其在金黄色葡萄球菌诱导的骨髓炎进展中的作用有待进一步阐明。因此,我们的目的是确定靶向SdrC是否是治疗金黄色葡萄球菌诱导的骨髓炎的新策略。敲除金黄色葡萄球菌sdrC序列,建立野生型和sdrC敲除(KO)金黄色葡萄球菌诱导骨髓炎大鼠模型。采用酶联免疫吸附法(elisa)检测炎症因子IL-6、TNF-α水平的差异,采用qPCR和Western blotting检测ALP、OST、Runx2等成骨指标水平的变化;这些实验分析了SdrC在金黄色葡萄球菌诱导的骨髓炎进展中的作用。利用转录组测序技术从分子水平探讨SdrC促进金黄色葡萄球菌诱导的骨髓炎发生的机制。敲除金黄色葡萄球菌SdrC蛋白后,生物膜形成明显减少。与对照组相比,sdrC-KO骨髓炎组骨组织炎症程度较对照组轻,炎症因子IL-6、TNF-α表达明显降低(p < 0.05)
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Molecular Histology
Journal of Molecular Histology 生物-细胞生物学
CiteScore
5.90
自引率
0.00%
发文量
68
审稿时长
1 months
期刊介绍: The Journal of Molecular Histology publishes results of original research on the localization and expression of molecules in animal cells, tissues and organs. Coverage includes studies describing novel cellular or ultrastructural distributions of molecules which provide insight into biochemical or physiological function, development, histologic structure and disease processes. Major research themes of particular interest include: - Cell-Cell and Cell-Matrix Interactions; - Connective Tissues; - Development and Disease; - Neuroscience. Please note that the Journal of Molecular Histology does not consider manuscripts dealing with the application of immunological or other probes on non-standard laboratory animal models unless the results are clearly of significant and general biological importance. The Journal of Molecular Histology publishes full-length original research papers, review articles, short communications and letters to the editors. All manuscripts are typically reviewed by two independent referees. The Journal of Molecular Histology is a continuation of The Histochemical Journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信