Hydraulics and Structural Mechanics Jointly Shape Root-to-Leaf Scaling of Xylem Conduit Traits.

IF 6 1区 生物学 Q1 PLANT SCIENCES
Milos Simovic, Sean T Michaletz
{"title":"Hydraulics and Structural Mechanics Jointly Shape Root-to-Leaf Scaling of Xylem Conduit Traits.","authors":"Milos Simovic, Sean T Michaletz","doi":"10.1111/pce.15660","DOIUrl":null,"url":null,"abstract":"<p><p>Xylem conduit morphology is shaped by the challenges of minimizing hydraulic resistance and preventing conduit wall collapse during vertical sap transport. While hydraulic theories predict that conduits widen from tip to base to minimize resistance, theory has not addressed how collapse prevention influences vertical variation in conduit morphology. Additionally, scaling relationships in roots remain largely unexplored. Here, we evaluate existing theories for conduit diameter scaling and synthesize new theory for vertical variation in thickness-to-span ratios. We test these theories using a novel bootstrapping approach to minimize sampling biases and analyze a data set of nearly 600 000 xylem conduits spanning above- and belowground organs from five conifer species. As predicted, conduits widened with distance from the leaf tip, with scaling exponents closely aligning with theoretical predictions. Conduits also widened from fine roots to coarse roots, mirroring aboveground patterns. Thickness-to-span ratios increased from base to tip and consistently exceeded the predicted critical collapse limit. These findings reveal how the physics of sap transport shape xylem morphology to balance hydraulic efficiency and structural stability. By combining novel theory, robust statistical methods, and comprehensive data, this study refines scaling predictions and advances understanding of mechanisms shaping xylem anatomy across plant organs.</p>","PeriodicalId":222,"journal":{"name":"Plant, Cell & Environment","volume":" ","pages":""},"PeriodicalIF":6.0000,"publicationDate":"2025-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant, Cell & Environment","FirstCategoryId":"2","ListUrlMain":"https://doi.org/10.1111/pce.15660","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Xylem conduit morphology is shaped by the challenges of minimizing hydraulic resistance and preventing conduit wall collapse during vertical sap transport. While hydraulic theories predict that conduits widen from tip to base to minimize resistance, theory has not addressed how collapse prevention influences vertical variation in conduit morphology. Additionally, scaling relationships in roots remain largely unexplored. Here, we evaluate existing theories for conduit diameter scaling and synthesize new theory for vertical variation in thickness-to-span ratios. We test these theories using a novel bootstrapping approach to minimize sampling biases and analyze a data set of nearly 600 000 xylem conduits spanning above- and belowground organs from five conifer species. As predicted, conduits widened with distance from the leaf tip, with scaling exponents closely aligning with theoretical predictions. Conduits also widened from fine roots to coarse roots, mirroring aboveground patterns. Thickness-to-span ratios increased from base to tip and consistently exceeded the predicted critical collapse limit. These findings reveal how the physics of sap transport shape xylem morphology to balance hydraulic efficiency and structural stability. By combining novel theory, robust statistical methods, and comprehensive data, this study refines scaling predictions and advances understanding of mechanisms shaping xylem anatomy across plant organs.

水力学和结构力学共同影响木质部导管性状的根到叶结垢。
木质部导管的形态是由最小化水力阻力和防止导管壁在垂直输送过程中坍塌的挑战形成的。虽然水力理论预测管道从尖端到底部加宽以减小阻力,但理论并没有解决防止坍塌如何影响管道形态的垂直变化。此外,根的缩放关系在很大程度上仍未被探索。在此,我们评估了现有的管道直径缩放理论,并综合了新的管道厚跨比垂直变化理论。我们使用一种新颖的自启动方法来检验这些理论,以最小化采样偏差,并分析了来自五种针叶树种的近60万个木质部导管的数据集。正如预测的那样,导管随着距离叶尖的距离而变宽,缩放指数与理论预测密切一致。导管也从细根加宽到粗根,镜像地上的模式。厚度与跨度比从底部到顶部不断增加,并始终超过预测的临界坍塌极限。这些发现揭示了汁液运输的物理特性如何影响木质部的形态,从而平衡水力效率和结构稳定性。通过结合新颖的理论、稳健的统计方法和全面的数据,本研究改进了尺度预测,并推进了对植物各器官木质部解剖形成机制的理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Plant, Cell & Environment
Plant, Cell & Environment 生物-植物科学
CiteScore
13.30
自引率
4.10%
发文量
253
审稿时长
1.8 months
期刊介绍: Plant, Cell & Environment is a premier plant science journal, offering valuable insights into plant responses to their environment. Committed to publishing high-quality theoretical and experimental research, the journal covers a broad spectrum of factors, spanning from molecular to community levels. Researchers exploring various aspects of plant biology, physiology, and ecology contribute to the journal's comprehensive understanding of plant-environment interactions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信