High-Dimensional Operator Learning for Molecular Density Functional Theory.

IF 5.7 1区 化学 Q2 CHEMISTRY, PHYSICAL
Jinni Yang, Runtong Pan, Jikai Sun, Jianzhong Wu
{"title":"High-Dimensional Operator Learning for Molecular Density Functional Theory.","authors":"Jinni Yang, Runtong Pan, Jikai Sun, Jianzhong Wu","doi":"10.1021/acs.jctc.5c00484","DOIUrl":null,"url":null,"abstract":"<p><p>Classical density functional theory (cDFT) provides a systematic framework to predict the structure and thermodynamic properties of chemical systems through molecular density profiles. Whereas the statistical-mechanical framework is theoretically rigorous, its applications are often constrained by challenges in formulating a reliable free-energy functional and the complexity of solving multidimensional integro-differential equations. In this work, we established a convolutional operator learning method that effectively separates the high-dimensional molecular density profile into lower-dimensional components, thereby exponentially reducing the vast input space. The operator learning network demonstrates exceptional learning capabilities, accurately mapping the relationship between the molecular density profile and its one-body direct correlation function for an atomistic polarizable model of carbon dioxide. The machine-learning procedure can be generalized to more complex molecular systems, offering high-precision operator-cDFT calculations at a low computational cost.</p>","PeriodicalId":45,"journal":{"name":"Journal of Chemical Theory and Computation","volume":" ","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2025-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Theory and Computation","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.jctc.5c00484","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Classical density functional theory (cDFT) provides a systematic framework to predict the structure and thermodynamic properties of chemical systems through molecular density profiles. Whereas the statistical-mechanical framework is theoretically rigorous, its applications are often constrained by challenges in formulating a reliable free-energy functional and the complexity of solving multidimensional integro-differential equations. In this work, we established a convolutional operator learning method that effectively separates the high-dimensional molecular density profile into lower-dimensional components, thereby exponentially reducing the vast input space. The operator learning network demonstrates exceptional learning capabilities, accurately mapping the relationship between the molecular density profile and its one-body direct correlation function for an atomistic polarizable model of carbon dioxide. The machine-learning procedure can be generalized to more complex molecular systems, offering high-precision operator-cDFT calculations at a low computational cost.

分子密度泛函理论的高维算子学习。
经典密度泛函理论(cDFT)为通过分子密度谱预测化学体系的结构和热力学性质提供了一个系统的框架。尽管统计力学框架在理论上是严格的,但它的应用常常受到制定可靠的自由能泛函和求解多维积分微分方程的复杂性的挑战的限制。在这项工作中,我们建立了一种卷积算子学习方法,有效地将高维分子密度剖面分离为低维分量,从而以指数方式减少了巨大的输入空间。算子学习网络展示了卓越的学习能力,准确地映射了二氧化碳原子极化模型的分子密度分布与其单体直接相关函数之间的关系。机器学习过程可以推广到更复杂的分子系统,以较低的计算成本提供高精度的算子- cdft计算。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Chemical Theory and Computation
Journal of Chemical Theory and Computation 化学-物理:原子、分子和化学物理
CiteScore
9.90
自引率
16.40%
发文量
568
审稿时长
1 months
期刊介绍: The Journal of Chemical Theory and Computation invites new and original contributions with the understanding that, if accepted, they will not be published elsewhere. Papers reporting new theories, methodology, and/or important applications in quantum electronic structure, molecular dynamics, and statistical mechanics are appropriate for submission to this Journal. Specific topics include advances in or applications of ab initio quantum mechanics, density functional theory, design and properties of new materials, surface science, Monte Carlo simulations, solvation models, QM/MM calculations, biomolecular structure prediction, and molecular dynamics in the broadest sense including gas-phase dynamics, ab initio dynamics, biomolecular dynamics, and protein folding. The Journal does not consider papers that are straightforward applications of known methods including DFT and molecular dynamics. The Journal favors submissions that include advances in theory or methodology with applications to compelling problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信