Yuxin Zhuo , Siyan Liu , Wenjuan Xu , Yunsong Mu , Anna Zhu , Feng Long
{"title":"Machine learning-driven 3D-QSAR models facilitated rapid on-site broad-spectrum immunoassay of (fluoro)quinolones using evanescent wave fiber-embedded optofluidic biochip","authors":"Yuxin Zhuo , Siyan Liu , Wenjuan Xu , Yunsong Mu , Anna Zhu , Feng Long","doi":"10.1016/j.bios.2025.117666","DOIUrl":null,"url":null,"abstract":"<div><div>(Fluoro)quinolones (FQs) pose significant threats to public health due to their widespread use and persistence in food and water sources. Given the extensive variety of FQs, testing each compound individually is prohibitively expensive and time-consuming. Here, we introduce an evanescent wave fiber-embedded 3D optofluidic biochip (e-FOB) that enables rapid, on-site detection of 14 FQs through a broad-spectrum immunoassay. The e-FOB integrates a functionalized fiber biosensor with a 3D optofluidic chip, leveraging a broad-spectrum anti-FQ antibody to achieve high sensitivity and specificity. Limits of detection for all tested FQs were below 3.0 μg/L, with excellent reusability and stability demonstrated over 400 cycles. Two machine learning-driven 3D quantitative structure-activity relationship (ML-3D-QSAR) models were developed to identify key physicochemical factors and quantitative interactions influencing FQs detection performance. The simulation results of both models demonstrate that the e-FOB, leveraging broad-spectrum antibodies, enables the detection of an entire class of FQs, highlighting the potential for broad-spectrum detection of antibiotics. The e-FOB was successfully applied to detect FQs in complex matrices such as honey and water samples, demonstrating its practical applicability. The ML-3D-QSAR empowered e-FOB offers a revolutionary approach to rapid, on-site screening of antibiotic residues, improving detection efficiency and reducing costs while protecting public health.</div></div>","PeriodicalId":259,"journal":{"name":"Biosensors and Bioelectronics","volume":"287 ","pages":"Article 117666"},"PeriodicalIF":10.7000,"publicationDate":"2025-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biosensors and Bioelectronics","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0956566325005408","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
(Fluoro)quinolones (FQs) pose significant threats to public health due to their widespread use and persistence in food and water sources. Given the extensive variety of FQs, testing each compound individually is prohibitively expensive and time-consuming. Here, we introduce an evanescent wave fiber-embedded 3D optofluidic biochip (e-FOB) that enables rapid, on-site detection of 14 FQs through a broad-spectrum immunoassay. The e-FOB integrates a functionalized fiber biosensor with a 3D optofluidic chip, leveraging a broad-spectrum anti-FQ antibody to achieve high sensitivity and specificity. Limits of detection for all tested FQs were below 3.0 μg/L, with excellent reusability and stability demonstrated over 400 cycles. Two machine learning-driven 3D quantitative structure-activity relationship (ML-3D-QSAR) models were developed to identify key physicochemical factors and quantitative interactions influencing FQs detection performance. The simulation results of both models demonstrate that the e-FOB, leveraging broad-spectrum antibodies, enables the detection of an entire class of FQs, highlighting the potential for broad-spectrum detection of antibiotics. The e-FOB was successfully applied to detect FQs in complex matrices such as honey and water samples, demonstrating its practical applicability. The ML-3D-QSAR empowered e-FOB offers a revolutionary approach to rapid, on-site screening of antibiotic residues, improving detection efficiency and reducing costs while protecting public health.
期刊介绍:
Biosensors & Bioelectronics, along with its open access companion journal Biosensors & Bioelectronics: X, is the leading international publication in the field of biosensors and bioelectronics. It covers research, design, development, and application of biosensors, which are analytical devices incorporating biological materials with physicochemical transducers. These devices, including sensors, DNA chips, electronic noses, and lab-on-a-chip, produce digital signals proportional to specific analytes. Examples include immunosensors and enzyme-based biosensors, applied in various fields such as medicine, environmental monitoring, and food industry. The journal also focuses on molecular and supramolecular structures for enhancing device performance.