Twisting O-operators by (2,3)-cocycle of Hom-Lie-Yamaguti algebras with representations

IF 1.2 3区 数学 Q1 MATHEMATICS
Sami Mabrouk , Sergei Silvestrov , Fatma Zouaidi
{"title":"Twisting O-operators by (2,3)-cocycle of Hom-Lie-Yamaguti algebras with representations","authors":"Sami Mabrouk ,&nbsp;Sergei Silvestrov ,&nbsp;Fatma Zouaidi","doi":"10.1016/j.geomphys.2025.105546","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we first introduce the notion of twisted <span><math><mi>O</mi></math></span>-operators on a Hom-Lie-Yamaguti algebra by a given <span><math><mo>(</mo><mn>2</mn><mo>,</mo><mn>3</mn><mo>)</mo></math></span>-cocycle with coefficients in a representation. We show that a twisted <span><math><mi>O</mi></math></span>-operator induces a Hom-Lie-Yamaguti structure. We also introduce the notion of a weighted Reynolds operator on a Hom-Lie-Yamaguti algebra, which can serve as a special case of twisted <span><math><mi>O</mi></math></span>-operators on Hom-Lie-Yamaguti algebras. Then, we define a cohomology of twisted <span><math><mi>O</mi></math></span>-operator on Hom-Lie-Yamaguiti algebras with coefficients in a representation. Furthermore, we introduce and study the Hom-NS-Lie-Yamaguti algebras as the underlying structure of the twisted <span><math><mi>O</mi></math></span>-operator on Hom-Lie-Yamaguti algebras. Finally, we investigate the twisted <span><math><mi>O</mi></math></span>-operator on Hom-Lie-Yamaguti algebras induced by the twisted <span><math><mi>O</mi></math></span>-operator on Hom-Lie algebras.</div></div>","PeriodicalId":55602,"journal":{"name":"Journal of Geometry and Physics","volume":"216 ","pages":"Article 105546"},"PeriodicalIF":1.2000,"publicationDate":"2025-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geometry and Physics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0393044025001305","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we first introduce the notion of twisted O-operators on a Hom-Lie-Yamaguti algebra by a given (2,3)-cocycle with coefficients in a representation. We show that a twisted O-operator induces a Hom-Lie-Yamaguti structure. We also introduce the notion of a weighted Reynolds operator on a Hom-Lie-Yamaguti algebra, which can serve as a special case of twisted O-operators on Hom-Lie-Yamaguti algebras. Then, we define a cohomology of twisted O-operator on Hom-Lie-Yamaguiti algebras with coefficients in a representation. Furthermore, we introduce and study the Hom-NS-Lie-Yamaguti algebras as the underlying structure of the twisted O-operator on Hom-Lie-Yamaguti algebras. Finally, we investigate the twisted O-operator on Hom-Lie-Yamaguti algebras induced by the twisted O-operator on Hom-Lie algebras.
带表示的homi - lie - yamaguti代数的(2,3)-环扭转o算子
在本文中,我们首先通过一个给定的带系数的(2,3)环在一个表示中引入了homi - lie - yamaguti代数上的扭曲o算子的概念。我们证明了一个扭曲的o算子诱导了一个homi - lie - yamaguti结构。我们还引入了homl - lie - yamaguti代数上的加权Reynolds算子的概念,它可以作为homl - lie - yamaguti代数上扭曲o算子的一个特例。然后,我们在具有系数的homi - lie - yamaguiti代数上定义了一个扭曲o算子的上同调。此外,我们引入并研究了homl - ns - lie - yamaguti代数作为homl - lie - yamaguti代数上扭曲o算子的基础结构。最后,我们研究了由homlie - yamaguti代数上的扭曲o算子诱导的homlie - yamaguti代数上的扭曲o算子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Geometry and Physics
Journal of Geometry and Physics 物理-物理:数学物理
CiteScore
2.90
自引率
6.70%
发文量
205
审稿时长
64 days
期刊介绍: The Journal of Geometry and Physics is an International Journal in Mathematical Physics. The Journal stimulates the interaction between geometry and physics by publishing primary research, feature and review articles which are of common interest to practitioners in both fields. The Journal of Geometry and Physics now also accepts Letters, allowing for rapid dissemination of outstanding results in the field of geometry and physics. Letters should not exceed a maximum of five printed journal pages (or contain a maximum of 5000 words) and should contain novel, cutting edge results that are of broad interest to the mathematical physics community. Only Letters which are expected to make a significant addition to the literature in the field will be considered. The Journal covers the following areas of research: Methods of: • Algebraic and Differential Topology • Algebraic Geometry • Real and Complex Differential Geometry • Riemannian Manifolds • Symplectic Geometry • Global Analysis, Analysis on Manifolds • Geometric Theory of Differential Equations • Geometric Control Theory • Lie Groups and Lie Algebras • Supermanifolds and Supergroups • Discrete Geometry • Spinors and Twistors Applications to: • Strings and Superstrings • Noncommutative Topology and Geometry • Quantum Groups • Geometric Methods in Statistics and Probability • Geometry Approaches to Thermodynamics • Classical and Quantum Dynamical Systems • Classical and Quantum Integrable Systems • Classical and Quantum Mechanics • Classical and Quantum Field Theory • General Relativity • Quantum Information • Quantum Gravity
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信