{"title":"Customizing surface grafting and interlayer functionalization for PFOA separation in polyamide membranes","authors":"Mohsen Pilevar , Hesam Jafarian , Nima Behzadnia , Qiaoli Liang , Sanam Etemadi Maleki , Sadegh Aghapour Aktij , Mohtada Sadrzadeh , Leigh Terry , Mark Elliott , Mostafa Dadashi Firouzjaei","doi":"10.1016/j.wroa.2025.100358","DOIUrl":null,"url":null,"abstract":"<div><div>Emerging contaminants, such as per- and polyfluoroalkyl substances (PFAS), pose significant challenges to ensuring a clean drinking water supply. This study evaluates various fabrication techniques for incorporating silver-based metal-organic frameworks (Ag-MOFs) into polyamide (PA) nanofiltration (NF) membranes to enhance perfluorooctanoic acid (PFOA) separation and anti-fouling performance. Various characterizations, including scanning and transmission electron microscopy, carboxylic group density, molecular weight cut-off (MWCO) measurements, and zeta potential analyses revealed that each method imparts distinct physicochemical and morphological characteristics to the modified membranes. Among all fabricated membranes, the interlayered Ag-MOFs (UI-MOF) obtained the highest permeance (13.7 Lm<sup>−2</sup>h<sup>−1</sup>bar<sup>−1</sup>) but the lowest PFOA rejection (88.9 %), likely due to its loose PA network with large MWCO (522 Da) and high carboxylic group density (82.0 sites/nm<sup>2</sup>). In contrast, the dip-coating surface-grafted Ag-MOFs (DS-MOF) achieved the highest PFOA rejection (93.4 %), attributed to its narrow pores (average pore diameter of 10 <em>Å</em> ± 0.06). Additionally, all modified membranes showed superior anti-fouling performance (flux recovery ratio > 94.0 %) compared to the Blank PA membrane, likely due to the improved surface hydrophilicity of the modified membranes.</div></div>","PeriodicalId":52198,"journal":{"name":"Water Research X","volume":"27 ","pages":"Article 100358"},"PeriodicalIF":8.2000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Research X","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S258991472500057X","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Emerging contaminants, such as per- and polyfluoroalkyl substances (PFAS), pose significant challenges to ensuring a clean drinking water supply. This study evaluates various fabrication techniques for incorporating silver-based metal-organic frameworks (Ag-MOFs) into polyamide (PA) nanofiltration (NF) membranes to enhance perfluorooctanoic acid (PFOA) separation and anti-fouling performance. Various characterizations, including scanning and transmission electron microscopy, carboxylic group density, molecular weight cut-off (MWCO) measurements, and zeta potential analyses revealed that each method imparts distinct physicochemical and morphological characteristics to the modified membranes. Among all fabricated membranes, the interlayered Ag-MOFs (UI-MOF) obtained the highest permeance (13.7 Lm−2h−1bar−1) but the lowest PFOA rejection (88.9 %), likely due to its loose PA network with large MWCO (522 Da) and high carboxylic group density (82.0 sites/nm2). In contrast, the dip-coating surface-grafted Ag-MOFs (DS-MOF) achieved the highest PFOA rejection (93.4 %), attributed to its narrow pores (average pore diameter of 10 Å ± 0.06). Additionally, all modified membranes showed superior anti-fouling performance (flux recovery ratio > 94.0 %) compared to the Blank PA membrane, likely due to the improved surface hydrophilicity of the modified membranes.
Water Research XEnvironmental Science-Water Science and Technology
CiteScore
12.30
自引率
1.30%
发文量
19
期刊介绍:
Water Research X is a sister journal of Water Research, which follows a Gold Open Access model. It focuses on publishing concise, letter-style research papers, visionary perspectives and editorials, as well as mini-reviews on emerging topics. The Journal invites contributions from researchers worldwide on various aspects of the science and technology related to the human impact on the water cycle, water quality, and its global management.