The small diffusion limit of the principal eigenvalue problems with advection

IF 2.3 2区 数学 Q1 MATHEMATICS
Yujin Guo , Yuan Lou , Hongfei Zhang
{"title":"The small diffusion limit of the principal eigenvalue problems with advection","authors":"Yujin Guo ,&nbsp;Yuan Lou ,&nbsp;Hongfei Zhang","doi":"10.1016/j.jde.2025.113473","DOIUrl":null,"url":null,"abstract":"<div><div>This paper is concerned with the following second order principal eigenvalue problem with an advection term:<span><span><span><math><mo>−</mo><mi>ε</mi><mi>Δ</mi><mi>ϕ</mi><mo>−</mo><mn>2</mn><mi>α</mi><mi>∇</mi><mi>m</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>⋅</mo><mi>∇</mi><mi>ϕ</mi><mo>+</mo><mi>V</mi><mo>(</mo><mi>x</mi><mo>)</mo><mi>ϕ</mi><mo>=</mo><msub><mrow><mi>λ</mi></mrow><mrow><mi>ε</mi></mrow></msub><mi>ϕ</mi><mspace></mspace><mspace></mspace><mspace></mspace><mtext>in</mtext><mspace></mspace><mspace></mspace><msubsup><mrow><mi>H</mi></mrow><mrow><mn>0</mn></mrow><mrow><mn>1</mn></mrow></msubsup><mo>(</mo><mi>Ω</mi><mo>)</mo><mo>,</mo></math></span></span></span> where <span><math><mi>Ω</mi><mo>⊆</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup><mspace></mspace><mo>(</mo><mi>N</mi><mo>≥</mo><mn>1</mn><mo>)</mo></math></span> is a bounded domain with smooth boundary ∂Ω and contains the origin as an interior point, the constants <span><math><mi>ε</mi><mo>&gt;</mo><mn>0</mn></math></span> and <span><math><mi>α</mi><mo>&gt;</mo><mn>0</mn></math></span> are the diffusive and advection coefficients, respectively, and <span><math><mi>m</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>∈</mo><msup><mrow><mi>C</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>(</mo><mover><mrow><mi>Ω</mi></mrow><mrow><mo>¯</mo></mrow></mover><mo>)</mo></math></span>, <span><math><mi>V</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>∈</mo><msup><mrow><mi>C</mi></mrow><mrow><mi>γ</mi></mrow></msup><mo>(</mo><mover><mrow><mi>Ω</mi></mrow><mrow><mo>¯</mo></mrow></mover><mo>)</mo><mspace></mspace><mo>(</mo><mn>0</mn><mo>&lt;</mo><mi>γ</mi><mo>&lt;</mo><mn>1</mn><mo>)</mo></math></span> are given functions. We investigate the refined limiting profiles of the principal eigenpair for the above eigenvalue problem in the small diffusion limit (<em>i.e.</em>, <span><math><mi>ε</mi><mo>→</mo><msup><mrow><mn>0</mn></mrow><mrow><mo>+</mo></mrow></msup></math></span>), where the advection term <span><math><mi>m</mi><mo>(</mo><mi>x</mi><mo>)</mo></math></span> can be degenerate.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"441 ","pages":"Article 113473"},"PeriodicalIF":2.3000,"publicationDate":"2025-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022039625005005","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper is concerned with the following second order principal eigenvalue problem with an advection term:εΔϕ2αm(x)ϕ+V(x)ϕ=λεϕinH01(Ω), where ΩRN(N1) is a bounded domain with smooth boundary ∂Ω and contains the origin as an interior point, the constants ε>0 and α>0 are the diffusive and advection coefficients, respectively, and m(x)C2(Ω¯), V(x)Cγ(Ω¯)(0<γ<1) are given functions. We investigate the refined limiting profiles of the principal eigenpair for the above eigenvalue problem in the small diffusion limit (i.e., ε0+), where the advection term m(x) can be degenerate.
带平流的主特征值问题的小扩散极限
本文研究以下具有平流项的二阶主特征值问题:−εΔϕ−2α∇m(x)·∇φ +V(x) φ =λε inh01 (Ω),其中Ω任任RN(N≥1)为光滑边界∂Ω的有界域,且原点为内点,常数ε>;0和α>;0分别为扩散系数和平流系数,m(x)∈C2(Ω¯),V(x)∈Cγ(Ω¯)(0<γ<1)为给定函数。在小扩散极限(即ε→0+)下,平流项m(x)可以简并,我们研究了上述特征值问题的主特征对的细化极限轮廓。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.40
自引率
8.30%
发文量
543
审稿时长
9 months
期刊介绍: The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools. Research Areas Include: • Mathematical control theory • Ordinary differential equations • Partial differential equations • Stochastic differential equations • Topological dynamics • Related topics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信