Regularity for fully nonlinear elliptic equations with natural growth in gradient and singular nonlinearity

IF 2.3 2区 数学 Q1 MATHEMATICS
Mohan Mallick , Ram Baran Verma
{"title":"Regularity for fully nonlinear elliptic equations with natural growth in gradient and singular nonlinearity","authors":"Mohan Mallick ,&nbsp;Ram Baran Verma","doi":"10.1016/j.jde.2025.113477","DOIUrl":null,"url":null,"abstract":"<div><div>In this article, we consider the following boundary value problem:<span><span><span><math><mrow><mo>{</mo><mtable><mtr><mtd><mi>F</mi><mo>(</mo><mi>x</mi><mo>,</mo><mi>u</mi><mo>,</mo><mi>D</mi><mi>u</mi><mo>,</mo><msup><mrow><mi>D</mi></mrow><mrow><mn>2</mn></mrow></msup><mi>u</mi><mo>)</mo><mo>+</mo><mi>c</mi><mo>(</mo><mi>x</mi><mo>)</mo><mi>u</mi><mo>+</mo><mi>p</mi><mo>(</mo><mi>x</mi><mo>)</mo><msup><mrow><mi>u</mi></mrow><mrow><mo>−</mo><mi>α</mi></mrow></msup></mtd><mtd><mo>=</mo><mn>0</mn><mspace></mspace><mtext>in</mtext><mspace></mspace><mi>Ω</mi><mo>,</mo></mtd></mtr><mtr><mtd><mi>u</mi></mtd><mtd><mo>=</mo><mn>0</mn><mspace></mspace><mtext>on</mtext><mspace></mspace><mo>∂</mo><mi>Ω</mi><mo>,</mo></mtd></mtr></mtable></mrow></math></span></span></span> where Ω is a bounded and <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> smooth domain in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup></math></span>. The operator <em>F</em> is proper and has superlinear growth in gradient. This study examines the boundary behavior of the solutions to the above equation and establishes a global regularity result similar to that established in <span><span>[11]</span></span>, <span><span>[15]</span></span>, which involves linear growth in the gradient.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"441 ","pages":"Article 113477"},"PeriodicalIF":2.3000,"publicationDate":"2025-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022039625005042","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this article, we consider the following boundary value problem:{F(x,u,Du,D2u)+c(x)u+p(x)uα=0inΩ,u=0onΩ, where Ω is a bounded and C2 smooth domain in RN. The operator F is proper and has superlinear growth in gradient. This study examines the boundary behavior of the solutions to the above equation and establishes a global regularity result similar to that established in [11], [15], which involves linear growth in the gradient.
具有梯度自然增长和奇异非线性的完全非线性椭圆方程的正则性
在本文中,我们考虑以下边值问题:{F(x,u,Du,D2u)+c(x)u+p(x)u−α=0inΩ,u=0on∂Ω,其中Ω是RN中的有界C2光滑域。算子F是适当的,在梯度上有超线性增长。本研究考察了上述方程解的边界行为,并建立了类似[11],[15]中建立的全局正则性结果,涉及梯度的线性增长。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.40
自引率
8.30%
发文量
543
审稿时长
9 months
期刊介绍: The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools. Research Areas Include: • Mathematical control theory • Ordinary differential equations • Partial differential equations • Stochastic differential equations • Topological dynamics • Related topics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信