Construction of Galois self-orthogonal MDS codes with larger dimensions

IF 1.2 3区 数学 Q1 MATHEMATICS
Ruhao Wan, Shixin Zhu
{"title":"Construction of Galois self-orthogonal MDS codes with larger dimensions","authors":"Ruhao Wan,&nbsp;Shixin Zhu","doi":"10.1016/j.ffa.2025.102665","DOIUrl":null,"url":null,"abstract":"<div><div>Let <span><math><mi>q</mi><mo>=</mo><msup><mrow><mi>p</mi></mrow><mrow><mi>m</mi></mrow></msup></math></span> be a prime power, <em>e</em> be an integer with <span><math><mn>0</mn><mo>≤</mo><mi>e</mi><mo>≤</mo><mi>m</mi><mo>−</mo><mn>1</mn></math></span> and <span><math><mi>s</mi><mo>=</mo><mi>gcd</mi><mo>⁡</mo><mo>(</mo><mi>e</mi><mo>,</mo><mi>m</mi><mo>)</mo></math></span>. In this paper, for a vector <span><math><mi>v</mi><mo>∈</mo><msup><mrow><mo>(</mo><msubsup><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow><mrow><mo>⁎</mo></mrow></msubsup><mo>)</mo></mrow><mrow><mi>n</mi></mrow></msup></math></span> and a <em>q</em>-ary linear code <span><math><mi>C</mi></math></span>, we give some necessary and sufficient conditions for the equivalent code <span><math><msub><mrow><mi>Φ</mi></mrow><mrow><mi>v</mi></mrow></msub><mo>(</mo><mi>C</mi><mo>)</mo></math></span> of <span><math><mi>C</mi></math></span> and the extended code of <span><math><msub><mrow><mi>Φ</mi></mrow><mrow><mi>v</mi></mrow></msub><mo>(</mo><mi>C</mi><mo>)</mo></math></span> to be <em>e</em>-Galois self-orthogonal. We then directly obtain some necessary and sufficient conditions for (extended) generalized Reed-Solomon (GRS and EGRS) codes to be <em>e</em>-Galois self-orthogonal. From this we show that if <span><math><mi>k</mi><mo>≥</mo><mi>min</mi><mo>⁡</mo><mo>{</mo><mi>max</mi><mo>⁡</mo><mo>{</mo><msup><mrow><mi>p</mi></mrow><mrow><mi>e</mi></mrow></msup><mo>,</mo><mo>⌈</mo><mfrac><mrow><mi>n</mi><mo>+</mo><msup><mrow><mi>p</mi></mrow><mrow><mi>e</mi></mrow></msup></mrow><mrow><msup><mrow><mi>p</mi></mrow><mrow><mi>e</mi></mrow></msup><mo>+</mo><mn>1</mn></mrow></mfrac><mo>⌉</mo><mo>}</mo><mo>,</mo><mi>max</mi><mo>⁡</mo><mo>{</mo><msup><mrow><mi>p</mi></mrow><mrow><mi>m</mi><mo>−</mo><mi>e</mi></mrow></msup><mo>,</mo><mo>⌈</mo><mfrac><mrow><mi>n</mi><mo>+</mo><msup><mrow><mi>p</mi></mrow><mrow><mi>m</mi><mo>−</mo><mi>e</mi></mrow></msup></mrow><mrow><msup><mrow><mi>p</mi></mrow><mrow><mi>m</mi><mo>−</mo><mi>e</mi></mrow></msup><mo>+</mo><mn>1</mn></mrow></mfrac><mo>⌉</mo><mo>}</mo><mo>}</mo></math></span>, there is no <span><math><msub><mrow><mo>[</mo><mi>n</mi><mo>,</mo><mi>k</mi><mo>]</mo></mrow><mrow><mi>q</mi></mrow></msub></math></span> <em>e</em>-Galois self-orthogonal (extended) GRS code. Furthermore, for all possible <em>e</em> satisfying <span><math><mn>0</mn><mo>≤</mo><mi>e</mi><mo>≤</mo><mi>m</mi><mo>−</mo><mn>1</mn></math></span>, we classify them into three cases (1) <span><math><mfrac><mrow><mi>m</mi></mrow><mrow><mi>s</mi></mrow></mfrac></math></span> odd and <em>p</em> even; (2) <span><math><mfrac><mrow><mi>m</mi></mrow><mrow><mi>s</mi></mrow></mfrac></math></span> odd and <em>p</em> odd; (3) <span><math><mfrac><mrow><mi>m</mi></mrow><mrow><mi>s</mi></mrow></mfrac></math></span> even, and construct several new classes of <em>e</em>-Galois self-orthogonal maximum distance separable (MDS) codes. It is worth noting that our <em>e</em>-Galois self-orthogonal MDS codes can have dimensions greater than <span><math><mo>⌊</mo><mfrac><mrow><mi>n</mi><mo>+</mo><msup><mrow><mi>p</mi></mrow><mrow><mi>e</mi></mrow></msup><mo>−</mo><mn>1</mn></mrow><mrow><msup><mrow><mi>p</mi></mrow><mrow><mi>e</mi></mrow></msup><mo>+</mo><mn>1</mn></mrow></mfrac><mo>⌋</mo></math></span>, which are not covered by previously known ones. Moreover, by propagation rules, we obtain some new MDS codes with Galois hulls of arbitrary dimensions.</div></div>","PeriodicalId":50446,"journal":{"name":"Finite Fields and Their Applications","volume":"108 ","pages":"Article 102665"},"PeriodicalIF":1.2000,"publicationDate":"2025-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Finite Fields and Their Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1071579725000954","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let q=pm be a prime power, e be an integer with 0em1 and s=gcd(e,m). In this paper, for a vector v(Fq)n and a q-ary linear code C, we give some necessary and sufficient conditions for the equivalent code Φv(C) of C and the extended code of Φv(C) to be e-Galois self-orthogonal. We then directly obtain some necessary and sufficient conditions for (extended) generalized Reed-Solomon (GRS and EGRS) codes to be e-Galois self-orthogonal. From this we show that if kmin{max{pe,n+pepe+1},max{pme,n+pmepme+1}}, there is no [n,k]q e-Galois self-orthogonal (extended) GRS code. Furthermore, for all possible e satisfying 0em1, we classify them into three cases (1) ms odd and p even; (2) ms odd and p odd; (3) ms even, and construct several new classes of e-Galois self-orthogonal maximum distance separable (MDS) codes. It is worth noting that our e-Galois self-orthogonal MDS codes can have dimensions greater than n+pe1pe+1, which are not covered by previously known ones. Moreover, by propagation rules, we obtain some new MDS codes with Galois hulls of arbitrary dimensions.
大维伽罗瓦自正交MDS码的构造
设q=pm为质数幂,e为0≤e≤m−1的整数,s=gcd (e,m)。本文针对向量v∈(Fq)n和一个q元线性码C,给出了C的等价码Φv(C)和扩展码Φv(C)是e-伽罗瓦自正交的一些充要条件。然后直接得到了广义Reed-Solomon码(GRS和EGRS)是e-伽罗瓦自正交的一些充要条件。由此我们证明了如果k≥min (min) (max) (pe,≤n+pepe+1), (max) (pm−e,≤n+pm−epm−e+1)²}},不存在[n,k]q e-伽罗瓦自正交(扩展)GRS码。进一步,对于所有可能满足0≤e≤m−1的e,我们将它们分为三种情况(1)ms为奇数,p为偶数;(2) ms奇数和p奇数;(3)构造了几类新的e-伽罗瓦自正交最大距离可分离码(MDS)。值得注意的是,我们的e-伽罗瓦自正交MDS码的维数可以大于⌊n+pe−1pe+1⌋,这是以前已知的码所没有的。此外,根据传播规则,我们得到了一些新的具有任意维伽罗瓦壳的MDS码。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.00
自引率
20.00%
发文量
133
审稿时长
6-12 weeks
期刊介绍: Finite Fields and Their Applications is a peer-reviewed technical journal publishing papers in finite field theory as well as in applications of finite fields. As a result of applications in a wide variety of areas, finite fields are increasingly important in several areas of mathematics, including linear and abstract algebra, number theory and algebraic geometry, as well as in computer science, statistics, information theory, and engineering. For cohesion, and because so many applications rely on various theoretical properties of finite fields, it is essential that there be a core of high-quality papers on theoretical aspects. In addition, since much of the vitality of the area comes from computational problems, the journal publishes papers on computational aspects of finite fields as well as on algorithms and complexity of finite field-related methods. The journal also publishes papers in various applications including, but not limited to, algebraic coding theory, cryptology, combinatorial design theory, pseudorandom number generation, and linear recurring sequences. There are other areas of application to be included, but the important point is that finite fields play a nontrivial role in the theory, application, or algorithm.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信