{"title":"Construction of Galois self-orthogonal MDS codes with larger dimensions","authors":"Ruhao Wan, Shixin Zhu","doi":"10.1016/j.ffa.2025.102665","DOIUrl":null,"url":null,"abstract":"<div><div>Let <span><math><mi>q</mi><mo>=</mo><msup><mrow><mi>p</mi></mrow><mrow><mi>m</mi></mrow></msup></math></span> be a prime power, <em>e</em> be an integer with <span><math><mn>0</mn><mo>≤</mo><mi>e</mi><mo>≤</mo><mi>m</mi><mo>−</mo><mn>1</mn></math></span> and <span><math><mi>s</mi><mo>=</mo><mi>gcd</mi><mo></mo><mo>(</mo><mi>e</mi><mo>,</mo><mi>m</mi><mo>)</mo></math></span>. In this paper, for a vector <span><math><mi>v</mi><mo>∈</mo><msup><mrow><mo>(</mo><msubsup><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow><mrow><mo>⁎</mo></mrow></msubsup><mo>)</mo></mrow><mrow><mi>n</mi></mrow></msup></math></span> and a <em>q</em>-ary linear code <span><math><mi>C</mi></math></span>, we give some necessary and sufficient conditions for the equivalent code <span><math><msub><mrow><mi>Φ</mi></mrow><mrow><mi>v</mi></mrow></msub><mo>(</mo><mi>C</mi><mo>)</mo></math></span> of <span><math><mi>C</mi></math></span> and the extended code of <span><math><msub><mrow><mi>Φ</mi></mrow><mrow><mi>v</mi></mrow></msub><mo>(</mo><mi>C</mi><mo>)</mo></math></span> to be <em>e</em>-Galois self-orthogonal. We then directly obtain some necessary and sufficient conditions for (extended) generalized Reed-Solomon (GRS and EGRS) codes to be <em>e</em>-Galois self-orthogonal. From this we show that if <span><math><mi>k</mi><mo>≥</mo><mi>min</mi><mo></mo><mo>{</mo><mi>max</mi><mo></mo><mo>{</mo><msup><mrow><mi>p</mi></mrow><mrow><mi>e</mi></mrow></msup><mo>,</mo><mo>⌈</mo><mfrac><mrow><mi>n</mi><mo>+</mo><msup><mrow><mi>p</mi></mrow><mrow><mi>e</mi></mrow></msup></mrow><mrow><msup><mrow><mi>p</mi></mrow><mrow><mi>e</mi></mrow></msup><mo>+</mo><mn>1</mn></mrow></mfrac><mo>⌉</mo><mo>}</mo><mo>,</mo><mi>max</mi><mo></mo><mo>{</mo><msup><mrow><mi>p</mi></mrow><mrow><mi>m</mi><mo>−</mo><mi>e</mi></mrow></msup><mo>,</mo><mo>⌈</mo><mfrac><mrow><mi>n</mi><mo>+</mo><msup><mrow><mi>p</mi></mrow><mrow><mi>m</mi><mo>−</mo><mi>e</mi></mrow></msup></mrow><mrow><msup><mrow><mi>p</mi></mrow><mrow><mi>m</mi><mo>−</mo><mi>e</mi></mrow></msup><mo>+</mo><mn>1</mn></mrow></mfrac><mo>⌉</mo><mo>}</mo><mo>}</mo></math></span>, there is no <span><math><msub><mrow><mo>[</mo><mi>n</mi><mo>,</mo><mi>k</mi><mo>]</mo></mrow><mrow><mi>q</mi></mrow></msub></math></span> <em>e</em>-Galois self-orthogonal (extended) GRS code. Furthermore, for all possible <em>e</em> satisfying <span><math><mn>0</mn><mo>≤</mo><mi>e</mi><mo>≤</mo><mi>m</mi><mo>−</mo><mn>1</mn></math></span>, we classify them into three cases (1) <span><math><mfrac><mrow><mi>m</mi></mrow><mrow><mi>s</mi></mrow></mfrac></math></span> odd and <em>p</em> even; (2) <span><math><mfrac><mrow><mi>m</mi></mrow><mrow><mi>s</mi></mrow></mfrac></math></span> odd and <em>p</em> odd; (3) <span><math><mfrac><mrow><mi>m</mi></mrow><mrow><mi>s</mi></mrow></mfrac></math></span> even, and construct several new classes of <em>e</em>-Galois self-orthogonal maximum distance separable (MDS) codes. It is worth noting that our <em>e</em>-Galois self-orthogonal MDS codes can have dimensions greater than <span><math><mo>⌊</mo><mfrac><mrow><mi>n</mi><mo>+</mo><msup><mrow><mi>p</mi></mrow><mrow><mi>e</mi></mrow></msup><mo>−</mo><mn>1</mn></mrow><mrow><msup><mrow><mi>p</mi></mrow><mrow><mi>e</mi></mrow></msup><mo>+</mo><mn>1</mn></mrow></mfrac><mo>⌋</mo></math></span>, which are not covered by previously known ones. Moreover, by propagation rules, we obtain some new MDS codes with Galois hulls of arbitrary dimensions.</div></div>","PeriodicalId":50446,"journal":{"name":"Finite Fields and Their Applications","volume":"108 ","pages":"Article 102665"},"PeriodicalIF":1.2000,"publicationDate":"2025-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Finite Fields and Their Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1071579725000954","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Let be a prime power, e be an integer with and . In this paper, for a vector and a q-ary linear code , we give some necessary and sufficient conditions for the equivalent code of and the extended code of to be e-Galois self-orthogonal. We then directly obtain some necessary and sufficient conditions for (extended) generalized Reed-Solomon (GRS and EGRS) codes to be e-Galois self-orthogonal. From this we show that if , there is no e-Galois self-orthogonal (extended) GRS code. Furthermore, for all possible e satisfying , we classify them into three cases (1) odd and p even; (2) odd and p odd; (3) even, and construct several new classes of e-Galois self-orthogonal maximum distance separable (MDS) codes. It is worth noting that our e-Galois self-orthogonal MDS codes can have dimensions greater than , which are not covered by previously known ones. Moreover, by propagation rules, we obtain some new MDS codes with Galois hulls of arbitrary dimensions.
期刊介绍:
Finite Fields and Their Applications is a peer-reviewed technical journal publishing papers in finite field theory as well as in applications of finite fields. As a result of applications in a wide variety of areas, finite fields are increasingly important in several areas of mathematics, including linear and abstract algebra, number theory and algebraic geometry, as well as in computer science, statistics, information theory, and engineering.
For cohesion, and because so many applications rely on various theoretical properties of finite fields, it is essential that there be a core of high-quality papers on theoretical aspects. In addition, since much of the vitality of the area comes from computational problems, the journal publishes papers on computational aspects of finite fields as well as on algorithms and complexity of finite field-related methods.
The journal also publishes papers in various applications including, but not limited to, algebraic coding theory, cryptology, combinatorial design theory, pseudorandom number generation, and linear recurring sequences. There are other areas of application to be included, but the important point is that finite fields play a nontrivial role in the theory, application, or algorithm.