Idoia Estiati , Ronaldo Correia de Brito , Mikel Tellabide , Maider Bolaños , Xabier Sukunza , Fabio Bentes Freire , José Teixeira Freire , Martin Olazar
{"title":"Alumina intermittent drying using new draft tubes for scaling up conical spouted beds","authors":"Idoia Estiati , Ronaldo Correia de Brito , Mikel Tellabide , Maider Bolaños , Xabier Sukunza , Fabio Bentes Freire , José Teixeira Freire , Martin Olazar","doi":"10.1016/j.partic.2025.05.015","DOIUrl":null,"url":null,"abstract":"<div><div>Novel draft tubes have been assessed to scale up the spouted bed technology. Accordingly, alumina drying runs have been conducted using different configurations (without tube and with open-sided and nonporous tubes) under intermittent strategies consisting in alternating periods of drying and periods of reduction or interruption of the air flow rate, and they have been compared with continuous drying. Furthermore, the influence the draft tubes have on the drying performance and energy requirements in the drying process has been evaluated. The results allow inferring that intermittent drying considerably decreases both drying time and energy requirements. Moreover, the new draft tubes improved the drying of alumina, as a similar energy efficiency than without draft tube was attained with lower specific energy consumption, which is essential to reduce the high-energy demand in the drying process and mitigate climate change. These findings, along with the stability the new tubes provided to the process, involve a further step in the scale up of spouted beds for industrial operations.</div></div>","PeriodicalId":401,"journal":{"name":"Particuology","volume":"103 ","pages":"Pages 141-150"},"PeriodicalIF":4.1000,"publicationDate":"2025-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Particuology","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1674200125001488","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Novel draft tubes have been assessed to scale up the spouted bed technology. Accordingly, alumina drying runs have been conducted using different configurations (without tube and with open-sided and nonporous tubes) under intermittent strategies consisting in alternating periods of drying and periods of reduction or interruption of the air flow rate, and they have been compared with continuous drying. Furthermore, the influence the draft tubes have on the drying performance and energy requirements in the drying process has been evaluated. The results allow inferring that intermittent drying considerably decreases both drying time and energy requirements. Moreover, the new draft tubes improved the drying of alumina, as a similar energy efficiency than without draft tube was attained with lower specific energy consumption, which is essential to reduce the high-energy demand in the drying process and mitigate climate change. These findings, along with the stability the new tubes provided to the process, involve a further step in the scale up of spouted beds for industrial operations.
期刊介绍:
The word ‘particuology’ was coined to parallel the discipline for the science and technology of particles.
Particuology is an interdisciplinary journal that publishes frontier research articles and critical reviews on the discovery, formulation and engineering of particulate materials, processes and systems. It especially welcomes contributions utilising advanced theoretical, modelling and measurement methods to enable the discovery and creation of new particulate materials, and the manufacturing of functional particulate-based products, such as sensors.
Papers are handled by Thematic Editors who oversee contributions from specific subject fields. These fields are classified into: Particle Synthesis and Modification; Particle Characterization and Measurement; Granular Systems and Bulk Solids Technology; Fluidization and Particle-Fluid Systems; Aerosols; and Applications of Particle Technology.
Key topics concerning the creation and processing of particulates include:
-Modelling and simulation of particle formation, collective behaviour of particles and systems for particle production over a broad spectrum of length scales
-Mining of experimental data for particle synthesis and surface properties to facilitate the creation of new materials and processes
-Particle design and preparation including controlled response and sensing functionalities in formation, delivery systems and biological systems, etc.
-Experimental and computational methods for visualization and analysis of particulate system.
These topics are broadly relevant to the production of materials, pharmaceuticals and food, and to the conversion of energy resources to fuels and protection of the environment.