Haonan Ji , Zhaohua Wang , Tie Qu , Xianzhou Song , Biliang Tang , Yijiang Li , Lifeng Ma
{"title":"Grinding mechanism of wet vertical spiral stirred mill based on DEM-CFD: Role of grinding sphere motion","authors":"Haonan Ji , Zhaohua Wang , Tie Qu , Xianzhou Song , Biliang Tang , Yijiang Li , Lifeng Ma","doi":"10.1016/j.partic.2025.05.013","DOIUrl":null,"url":null,"abstract":"<div><div>The grinding sphere is the main ultra-fine grinding medium for the vertical spiral stirred mill, and its motion characteristics have a significant impact on grinding efficiency. A DEM-CFD model of an experimental mill was established, and the accuracy was verified through experiment. The motion characteristics of grinding spheres were systematically analyzed from four aspects: motion trajectory, velocity, force and energy. The results showed that the motion trajectories of the grinding spheres at the cylinder bottom are the shortest, which can be defined as the inert spheres. The trajectory length increases continuously as the height increases in the cylinder, while it increases first and then decreases with the increase of the radial distance. The velocity of grinding spheres near the agitator blade is the highest, while it is lowest at the cylinder wall. By comparing the total, radial, tangential and axial velocities, it was found that its motion mode is mainly tangential motion around the axis, and the axial and radial velocities are very small. The kinetic energy distribution of the grinding spheres is basically the same as the total velocity. The normal collision force of the grinding sphere is 6 times of the tangential collision force, but the tangential collision energy is about 1.4 times of the normal collision energy. Last, five grinding zones were established to characterize the contribution of grinding spheres inside the cylinder to the grinding efficiency. These results will help to understand the grinding mechanism and provide theoretical guidance for the structural design.</div></div>","PeriodicalId":401,"journal":{"name":"Particuology","volume":"103 ","pages":"Pages 151-163"},"PeriodicalIF":4.1000,"publicationDate":"2025-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Particuology","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1674200125001464","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The grinding sphere is the main ultra-fine grinding medium for the vertical spiral stirred mill, and its motion characteristics have a significant impact on grinding efficiency. A DEM-CFD model of an experimental mill was established, and the accuracy was verified through experiment. The motion characteristics of grinding spheres were systematically analyzed from four aspects: motion trajectory, velocity, force and energy. The results showed that the motion trajectories of the grinding spheres at the cylinder bottom are the shortest, which can be defined as the inert spheres. The trajectory length increases continuously as the height increases in the cylinder, while it increases first and then decreases with the increase of the radial distance. The velocity of grinding spheres near the agitator blade is the highest, while it is lowest at the cylinder wall. By comparing the total, radial, tangential and axial velocities, it was found that its motion mode is mainly tangential motion around the axis, and the axial and radial velocities are very small. The kinetic energy distribution of the grinding spheres is basically the same as the total velocity. The normal collision force of the grinding sphere is 6 times of the tangential collision force, but the tangential collision energy is about 1.4 times of the normal collision energy. Last, five grinding zones were established to characterize the contribution of grinding spheres inside the cylinder to the grinding efficiency. These results will help to understand the grinding mechanism and provide theoretical guidance for the structural design.
期刊介绍:
The word ‘particuology’ was coined to parallel the discipline for the science and technology of particles.
Particuology is an interdisciplinary journal that publishes frontier research articles and critical reviews on the discovery, formulation and engineering of particulate materials, processes and systems. It especially welcomes contributions utilising advanced theoretical, modelling and measurement methods to enable the discovery and creation of new particulate materials, and the manufacturing of functional particulate-based products, such as sensors.
Papers are handled by Thematic Editors who oversee contributions from specific subject fields. These fields are classified into: Particle Synthesis and Modification; Particle Characterization and Measurement; Granular Systems and Bulk Solids Technology; Fluidization and Particle-Fluid Systems; Aerosols; and Applications of Particle Technology.
Key topics concerning the creation and processing of particulates include:
-Modelling and simulation of particle formation, collective behaviour of particles and systems for particle production over a broad spectrum of length scales
-Mining of experimental data for particle synthesis and surface properties to facilitate the creation of new materials and processes
-Particle design and preparation including controlled response and sensing functionalities in formation, delivery systems and biological systems, etc.
-Experimental and computational methods for visualization and analysis of particulate system.
These topics are broadly relevant to the production of materials, pharmaceuticals and food, and to the conversion of energy resources to fuels and protection of the environment.