A Tikhonov-type method for inverse source problems for time-space fractional parabolic equations

IF 3.4 2区 数学 Q1 MATHEMATICS, APPLIED
Nguyen Van Duc , Thi-Phong Nguyen
{"title":"A Tikhonov-type method for inverse source problems for time-space fractional parabolic equations","authors":"Nguyen Van Duc ,&nbsp;Thi-Phong Nguyen","doi":"10.1016/j.amc.2025.129567","DOIUrl":null,"url":null,"abstract":"<div><div>This paper investigates a Tikhonov-type approach for addressing inverse source problems related to time-space fractional parabolic equations. The method ensures a Hölder-type error estimate for the regularized solution at an optimal order, enabling a fixed parameter choice rule that does not depend on the data. Efficient numerical algorithms are devised for practical implementation, accompanied by numerical examples.</div></div>","PeriodicalId":55496,"journal":{"name":"Applied Mathematics and Computation","volume":"507 ","pages":"Article 129567"},"PeriodicalIF":3.4000,"publicationDate":"2025-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics and Computation","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0096300325002930","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

This paper investigates a Tikhonov-type approach for addressing inverse source problems related to time-space fractional parabolic equations. The method ensures a Hölder-type error estimate for the regularized solution at an optimal order, enabling a fixed parameter choice rule that does not depend on the data. Efficient numerical algorithms are devised for practical implementation, accompanied by numerical examples.
时空分数抛物型方程反源问题的tikhonov型方法
本文研究了一种求解时空分数阶抛物型方程逆源问题的tikhonov型方法。该方法确保正则化解以最优顺序进行Hölder-type误差估计,从而实现不依赖于数据的固定参数选择规则。为实际应用设计了有效的数值算法,并给出了数值算例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.90
自引率
10.00%
发文量
755
审稿时长
36 days
期刊介绍: Applied Mathematics and Computation addresses work at the interface between applied mathematics, numerical computation, and applications of systems – oriented ideas to the physical, biological, social, and behavioral sciences, and emphasizes papers of a computational nature focusing on new algorithms, their analysis and numerical results. In addition to presenting research papers, Applied Mathematics and Computation publishes review articles and single–topics issues.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信