{"title":"Seeing the invisible threats: Detecting egg white allergens using bio/nano-sensors; a comprehensive review","authors":"Reza Abedi-Firoozjah , Milad Tavassoli , Zakiyeh Balouch Zehi , Behnam Bahramian , Nazli Doroud , Ehsan Sadeghi , Fuyuan Zhang , Seid Mahdi Jafari","doi":"10.1016/j.cis.2025.103568","DOIUrl":null,"url":null,"abstract":"<div><div>Eggs are a highly nutritious and widely available food, rich in essential nutrients such as lipids and proteins. However, they can trigger severe allergic reactions, especially in infants and children. These reactions often manifest as IgE-mediated symptoms affecting the nose and throat and, in some cases, can lead to life-threatening anaphylaxis. The primary allergens in eggs are found in the egg white (EW) and include ovalbumin, ovomucoid, ovotransferrin, and lysozyme. Additionally, avidin in EW has been studied for its anti-nutritional properties. Detecting EW allergens in food products can be challenging due to their presence in trace amounts and the natural interference of the food matrix. Recently, biosensors have emerged as sensitive, selective, and rapid methods for detecting EW in food products, offering a promising alternative to traditional detection techniques. This review presents various sensing technologies for detecting EW allergens in food, outlining the components and criteria for an ideal biosensor, different types of biosensors, and their applications in the food industry. It highlights the most commonly used biosensor types for detecting EW allergens, with particular attention to recent advancements in optical and electrochemical biosensors. This review assesses their performance, focusing on sensitivity, specificity, detection limits, and cost-effectiveness. Furthermore, it addresses the challenges and opportunities in developing biosensors for analyzing EW.</div></div>","PeriodicalId":239,"journal":{"name":"Advances in Colloid and Interface Science","volume":"343 ","pages":"Article 103568"},"PeriodicalIF":19.3000,"publicationDate":"2025-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Colloid and Interface Science","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0001868625001794","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Eggs are a highly nutritious and widely available food, rich in essential nutrients such as lipids and proteins. However, they can trigger severe allergic reactions, especially in infants and children. These reactions often manifest as IgE-mediated symptoms affecting the nose and throat and, in some cases, can lead to life-threatening anaphylaxis. The primary allergens in eggs are found in the egg white (EW) and include ovalbumin, ovomucoid, ovotransferrin, and lysozyme. Additionally, avidin in EW has been studied for its anti-nutritional properties. Detecting EW allergens in food products can be challenging due to their presence in trace amounts and the natural interference of the food matrix. Recently, biosensors have emerged as sensitive, selective, and rapid methods for detecting EW in food products, offering a promising alternative to traditional detection techniques. This review presents various sensing technologies for detecting EW allergens in food, outlining the components and criteria for an ideal biosensor, different types of biosensors, and their applications in the food industry. It highlights the most commonly used biosensor types for detecting EW allergens, with particular attention to recent advancements in optical and electrochemical biosensors. This review assesses their performance, focusing on sensitivity, specificity, detection limits, and cost-effectiveness. Furthermore, it addresses the challenges and opportunities in developing biosensors for analyzing EW.
期刊介绍:
"Advances in Colloid and Interface Science" is an international journal that focuses on experimental and theoretical developments in interfacial and colloidal phenomena. The journal covers a wide range of disciplines including biology, chemistry, physics, and technology.
The journal accepts review articles on any topic within the scope of colloid and interface science. These articles should provide an in-depth analysis of the subject matter, offering a critical review of the current state of the field. The author's informed opinion on the topic should also be included. The manuscript should compare and contrast ideas found in the reviewed literature and address the limitations of these ideas.
Typically, the articles published in this journal are written by recognized experts in the field.