{"title":"On maximum induced forests of the balanced bipartite graphs","authors":"Ali Ghalavand, Xueliang Li","doi":"10.1016/j.dam.2025.05.029","DOIUrl":null,"url":null,"abstract":"<div><div>Let <span><math><mi>B</mi></math></span> be a balanced bipartite graph with two parts, <span><math><msub><mrow><mi>V</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> and <span><math><msub><mrow><mi>V</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>, each containing <span><math><mi>n</mi></math></span> vertices, resulting in a total of <span><math><mrow><mn>2</mn><mi>n</mi></mrow></math></span> vertices. Recently, Wang and Wu conjectured that if the minimum degree of <span><math><mi>B</mi></math></span>, denoted as <span><math><mrow><mi>δ</mi><mrow><mo>(</mo><mi>B</mi><mo>)</mo></mrow></mrow></math></span>, is greater than or equal to <span><math><mrow><mfrac><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mo>+</mo><mn>1</mn></mrow></math></span>, then the largest order of an induced forest in <span><math><mi>B</mi></math></span> is equal to <span><math><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></math></span>. In this paper, we prove this conjecture and show that the condition on the minimum degree cannot be relaxed in general terms. Furthermore, we determine that if <span><math><mrow><mi>δ</mi><mrow><mo>(</mo><mi>B</mi><mo>)</mo></mrow><mo>≥</mo><mfrac><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mo>+</mo><mn>1</mn></mrow></math></span>, then any subset <span><math><mi>S</mi></math></span> of vertices in <span><math><mi>B</mi></math></span> that induces a forest of size <span><math><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></math></span> will satisfy the conditions <span><math><mrow><mo>min</mo><mrow><mo>{</mo><mrow><mo>|</mo><mi>S</mi><mo>∩</mo><msub><mrow><mi>V</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>|</mo></mrow><mo>,</mo><mrow><mo>|</mo><mi>S</mi><mo>∩</mo><msub><mrow><mi>V</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>|</mo></mrow><mo>}</mo></mrow><mo>=</mo><mn>1</mn></mrow></math></span> when <span><math><mi>n</mi></math></span> is odd, and <span><math><mrow><mo>min</mo><mrow><mo>{</mo><mrow><mo>|</mo><mi>S</mi><mo>∩</mo><msub><mrow><mi>V</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>|</mo></mrow><mo>,</mo><mrow><mo>|</mo><mi>S</mi><mo>∩</mo><msub><mrow><mi>V</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>|</mo></mrow><mo>}</mo></mrow><mo>∈</mo><mrow><mo>{</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mfrac><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mo>}</mo></mrow></mrow></math></span> when <span><math><mi>n</mi></math></span> is even. Additionally, we identify infinitely many balanced bipartite graphs that meet these conditions.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"375 ","pages":"Pages 1-6"},"PeriodicalIF":1.0000,"publicationDate":"2025-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166218X25002872","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Let be a balanced bipartite graph with two parts, and , each containing vertices, resulting in a total of vertices. Recently, Wang and Wu conjectured that if the minimum degree of , denoted as , is greater than or equal to , then the largest order of an induced forest in is equal to . In this paper, we prove this conjecture and show that the condition on the minimum degree cannot be relaxed in general terms. Furthermore, we determine that if , then any subset of vertices in that induces a forest of size will satisfy the conditions when is odd, and when is even. Additionally, we identify infinitely many balanced bipartite graphs that meet these conditions.
期刊介绍:
The aim of Discrete Applied Mathematics is to bring together research papers in different areas of algorithmic and applicable discrete mathematics as well as applications of combinatorial mathematics to informatics and various areas of science and technology. Contributions presented to the journal can be research papers, short notes, surveys, and possibly research problems. The "Communications" section will be devoted to the fastest possible publication of recent research results that are checked and recommended for publication by a member of the Editorial Board. The journal will also publish a limited number of book announcements as well as proceedings of conferences. These proceedings will be fully refereed and adhere to the normal standards of the journal.
Potential authors are advised to view the journal and the open calls-for-papers of special issues before submitting their manuscripts. Only high-quality, original work that is within the scope of the journal or the targeted special issue will be considered.