On maximum induced forests of the balanced bipartite graphs

IF 1 3区 数学 Q3 MATHEMATICS, APPLIED
Ali Ghalavand, Xueliang Li
{"title":"On maximum induced forests of the balanced bipartite graphs","authors":"Ali Ghalavand,&nbsp;Xueliang Li","doi":"10.1016/j.dam.2025.05.029","DOIUrl":null,"url":null,"abstract":"<div><div>Let <span><math><mi>B</mi></math></span> be a balanced bipartite graph with two parts, <span><math><msub><mrow><mi>V</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> and <span><math><msub><mrow><mi>V</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>, each containing <span><math><mi>n</mi></math></span> vertices, resulting in a total of <span><math><mrow><mn>2</mn><mi>n</mi></mrow></math></span> vertices. Recently, Wang and Wu conjectured that if the minimum degree of <span><math><mi>B</mi></math></span>, denoted as <span><math><mrow><mi>δ</mi><mrow><mo>(</mo><mi>B</mi><mo>)</mo></mrow></mrow></math></span>, is greater than or equal to <span><math><mrow><mfrac><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mo>+</mo><mn>1</mn></mrow></math></span>, then the largest order of an induced forest in <span><math><mi>B</mi></math></span> is equal to <span><math><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></math></span>. In this paper, we prove this conjecture and show that the condition on the minimum degree cannot be relaxed in general terms. Furthermore, we determine that if <span><math><mrow><mi>δ</mi><mrow><mo>(</mo><mi>B</mi><mo>)</mo></mrow><mo>≥</mo><mfrac><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mo>+</mo><mn>1</mn></mrow></math></span>, then any subset <span><math><mi>S</mi></math></span> of vertices in <span><math><mi>B</mi></math></span> that induces a forest of size <span><math><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></math></span> will satisfy the conditions <span><math><mrow><mo>min</mo><mrow><mo>{</mo><mrow><mo>|</mo><mi>S</mi><mo>∩</mo><msub><mrow><mi>V</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>|</mo></mrow><mo>,</mo><mrow><mo>|</mo><mi>S</mi><mo>∩</mo><msub><mrow><mi>V</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>|</mo></mrow><mo>}</mo></mrow><mo>=</mo><mn>1</mn></mrow></math></span> when <span><math><mi>n</mi></math></span> is odd, and <span><math><mrow><mo>min</mo><mrow><mo>{</mo><mrow><mo>|</mo><mi>S</mi><mo>∩</mo><msub><mrow><mi>V</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>|</mo></mrow><mo>,</mo><mrow><mo>|</mo><mi>S</mi><mo>∩</mo><msub><mrow><mi>V</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>|</mo></mrow><mo>}</mo></mrow><mo>∈</mo><mrow><mo>{</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mfrac><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mo>}</mo></mrow></mrow></math></span> when <span><math><mi>n</mi></math></span> is even. Additionally, we identify infinitely many balanced bipartite graphs that meet these conditions.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"375 ","pages":"Pages 1-6"},"PeriodicalIF":1.0000,"publicationDate":"2025-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166218X25002872","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Let B be a balanced bipartite graph with two parts, V1 and V2, each containing n vertices, resulting in a total of 2n vertices. Recently, Wang and Wu conjectured that if the minimum degree of B, denoted as δ(B), is greater than or equal to n2+1, then the largest order of an induced forest in B is equal to n+1. In this paper, we prove this conjecture and show that the condition on the minimum degree cannot be relaxed in general terms. Furthermore, we determine that if δ(B)n2+1, then any subset S of vertices in B that induces a forest of size n+1 will satisfy the conditions min{|SV1|,|SV2|}=1 when n is odd, and min{|SV1|,|SV2|}{1,2,n2} when n is even. Additionally, we identify infinitely many balanced bipartite graphs that meet these conditions.
平衡二部图的最大诱导林
设B是一个平衡的二部图,有V1和V2两部分,每部分包含n个顶点,总共有2n个顶点。最近,Wang和Wu推测,如果B的最小度δ(B)大于或等于n2+1,则B中诱导森林的最大阶数等于n+1。本文证明了这一猜想,并证明了最小度的条件一般不能松弛。进一步,我们确定当δ(B)≥n2+1时,则B中任何顶点的子集S能归纳出一个大小为n+1的森林,当n为奇数时满足min{|S∩V1|,|S∩V2|}=1,当n为偶数时满足min{|S∩V1|,|S∩V2|}∈{1,2,n2}。此外,我们还确定了满足这些条件的无穷多个平衡二部图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Discrete Applied Mathematics
Discrete Applied Mathematics 数学-应用数学
CiteScore
2.30
自引率
9.10%
发文量
422
审稿时长
4.5 months
期刊介绍: The aim of Discrete Applied Mathematics is to bring together research papers in different areas of algorithmic and applicable discrete mathematics as well as applications of combinatorial mathematics to informatics and various areas of science and technology. Contributions presented to the journal can be research papers, short notes, surveys, and possibly research problems. The "Communications" section will be devoted to the fastest possible publication of recent research results that are checked and recommended for publication by a member of the Editorial Board. The journal will also publish a limited number of book announcements as well as proceedings of conferences. These proceedings will be fully refereed and adhere to the normal standards of the journal. Potential authors are advised to view the journal and the open calls-for-papers of special issues before submitting their manuscripts. Only high-quality, original work that is within the scope of the journal or the targeted special issue will be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信