Finite time trajectory tracking control of underwater salvage robot under full-state constraints

IF 3.9 3区 工程技术 Q2 ENGINEERING, MARINE
Xue Bai, Yan Zhang, Wenyi Tan, Yang Liu, Baihui Jiang, Jiawei Wang
{"title":"Finite time trajectory tracking control of underwater salvage robot under full-state constraints","authors":"Xue Bai,&nbsp;Yan Zhang,&nbsp;Wenyi Tan,&nbsp;Yang Liu,&nbsp;Baihui Jiang,&nbsp;Jiawei Wang","doi":"10.1016/j.ijnaoe.2025.100663","DOIUrl":null,"url":null,"abstract":"<div><div>Aiming at the problem that the trajectory tracking of underwater salvage robots is subject to model uncertainty and complex unknown interference when working in the marine environment, a finite time trajectory tracking control scheme based on command filtering and full-state constraint is proposed. The scheme uses the super-twisting algorithm to design the observer to accurately estimate the composite disturbance composed of model uncertainty and unknown complex time-varying disturbance in the system. Secondly, the finite-time command filter based on the first-order Levant differentiator is introduced to solve the problem of ”differential explosion” in deriving the virtual control law concerning time. The barrier Lyapunov function, backstepping control method, and finite-time control theory are combined to achieve finite time full-state constraints. Then, the control scheme is verified by Lyapunov stability, which can make the position error and velocity error of the system converge to the stable region in a finite time.</div></div>","PeriodicalId":14160,"journal":{"name":"International Journal of Naval Architecture and Ocean Engineering","volume":"17 ","pages":"Article 100663"},"PeriodicalIF":3.9000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Naval Architecture and Ocean Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2092678225000214","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MARINE","Score":null,"Total":0}
引用次数: 0

Abstract

Aiming at the problem that the trajectory tracking of underwater salvage robots is subject to model uncertainty and complex unknown interference when working in the marine environment, a finite time trajectory tracking control scheme based on command filtering and full-state constraint is proposed. The scheme uses the super-twisting algorithm to design the observer to accurately estimate the composite disturbance composed of model uncertainty and unknown complex time-varying disturbance in the system. Secondly, the finite-time command filter based on the first-order Levant differentiator is introduced to solve the problem of ”differential explosion” in deriving the virtual control law concerning time. The barrier Lyapunov function, backstepping control method, and finite-time control theory are combined to achieve finite time full-state constraints. Then, the control scheme is verified by Lyapunov stability, which can make the position error and velocity error of the system converge to the stable region in a finite time.
全状态约束下水下打捞机器人的有限时间轨迹跟踪控制
针对水下打捞机器人在海洋环境中工作时轨迹跟踪存在模型不确定性和复杂未知干扰的问题,提出了一种基于命令滤波和全状态约束的有限时间轨迹跟踪控制方案。该方案采用超扭转算法设计观测器,以准确估计系统中由模型不确定性和未知复杂时变扰动组成的复合扰动。其次,引入基于一阶黎凡特微分器的有限时间命令滤波器,解决了在推导含时虚拟控制律时的“差分爆炸”问题;将势垒Lyapunov函数、反演控制方法和有限时间控制理论相结合,实现有限时间全状态约束。然后,通过Lyapunov稳定性对控制方案进行验证,该控制方案能使系统的位置误差和速度误差在有限时间内收敛到稳定区域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.90
自引率
4.50%
发文量
62
审稿时长
12 months
期刊介绍: International Journal of Naval Architecture and Ocean Engineering provides a forum for engineers and scientists from a wide range of disciplines to present and discuss various phenomena in the utilization and preservation of ocean environment. Without being limited by the traditional categorization, it is encouraged to present advanced technology development and scientific research, as long as they are aimed for more and better human engagement with ocean environment. Topics include, but not limited to: marine hydrodynamics; structural mechanics; marine propulsion system; design methodology & practice; production technology; system dynamics & control; marine equipment technology; materials science; underwater acoustics; ocean remote sensing; and information technology related to ship and marine systems; ocean energy systems; marine environmental engineering; maritime safety engineering; polar & arctic engineering; coastal & port engineering; subsea engineering; and specialized watercraft engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信