Integrating CDIO framework into polymer engineering education: A hands-on approach to design, process, and evaluate biodegradable 3D printing filaments
{"title":"Integrating CDIO framework into polymer engineering education: A hands-on approach to design, process, and evaluate biodegradable 3D printing filaments","authors":"Yanyan Zheng , Yong Luo , Xiuhai Zhang , Jun Xu","doi":"10.1016/j.ece.2025.05.007","DOIUrl":null,"url":null,"abstract":"<div><div>This study introduces a hands-on polymer engineering curriculum integrating the Conceive-Design-Implement-Operate (CDIO) framework to bridge material design, processing, and evaluation of biodegradable 3D printing filaments. To address the brittleness of polylactic acid (PLA), students formulated PLA/poly (butylene succinate) (PBS) blends with an epoxy-based compatibilizer (ADR) and compounded pellets via twin-screw extrusion. Specimens for mechanical test were fabricated using an industrial-grade injection molding machine, with processing parameters guided by Moldex3D melt flow simulations. Continuous filaments (1.75 ± 0.05 mm diameter) were produced via single-screw extrusion with real-time filament diameter monitoring. The performance of the material formulations was evaluated through mechanical testing, rheological measurements, and assessment of the 3D printing quality. Students achieved successful filament printing in 100 % of cases (vs. <50 % in the prior year), attributed to simulation-aided parameter optimization, historical data sharing, and structured feedback mechanisms. Systematic analyses established the interplay between material formulation, processability, and mechanical properties. Evaluations of student performance demonstrated enhanced technical skills (27/34 students scored B or higher) and sustainability-driven problem-solving abilities. This curriculum bridges theoretical knowledge with industrial applications, offering a scalable model for sustainable engineering education.</div></div>","PeriodicalId":48509,"journal":{"name":"Education for Chemical Engineers","volume":"52 ","pages":"Pages 111-118"},"PeriodicalIF":3.5000,"publicationDate":"2025-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Education for Chemical Engineers","FirstCategoryId":"95","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1749772825000260","RegionNum":2,"RegionCategory":"教育学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"EDUCATION, SCIENTIFIC DISCIPLINES","Score":null,"Total":0}
引用次数: 0
Abstract
This study introduces a hands-on polymer engineering curriculum integrating the Conceive-Design-Implement-Operate (CDIO) framework to bridge material design, processing, and evaluation of biodegradable 3D printing filaments. To address the brittleness of polylactic acid (PLA), students formulated PLA/poly (butylene succinate) (PBS) blends with an epoxy-based compatibilizer (ADR) and compounded pellets via twin-screw extrusion. Specimens for mechanical test were fabricated using an industrial-grade injection molding machine, with processing parameters guided by Moldex3D melt flow simulations. Continuous filaments (1.75 ± 0.05 mm diameter) were produced via single-screw extrusion with real-time filament diameter monitoring. The performance of the material formulations was evaluated through mechanical testing, rheological measurements, and assessment of the 3D printing quality. Students achieved successful filament printing in 100 % of cases (vs. <50 % in the prior year), attributed to simulation-aided parameter optimization, historical data sharing, and structured feedback mechanisms. Systematic analyses established the interplay between material formulation, processability, and mechanical properties. Evaluations of student performance demonstrated enhanced technical skills (27/34 students scored B or higher) and sustainability-driven problem-solving abilities. This curriculum bridges theoretical knowledge with industrial applications, offering a scalable model for sustainable engineering education.
期刊介绍:
Education for Chemical Engineers was launched in 2006 with a remit to publisheducation research papers, resource reviews and teaching and learning notes. ECE is targeted at chemical engineering academics and educators, discussing the ongoingchanges and development in chemical engineering education. This international title publishes papers from around the world, creating a global network of chemical engineering academics. Papers demonstrating how educational research results can be applied to chemical engineering education are particularly welcome, as are the accounts of research work that brings new perspectives to established principles, highlighting unsolved problems or indicating direction for future research relevant to chemical engineering education. Core topic areas: -Assessment- Accreditation- Curriculum development and transformation- Design- Diversity- Distance education-- E-learning Entrepreneurship programs- Industry-academic linkages- Benchmarking- Lifelong learning- Multidisciplinary programs- Outreach from kindergarten to high school programs- Student recruitment and retention and transition programs- New technology- Problem-based learning- Social responsibility and professionalism- Teamwork- Web-based learning