Mapping Soil Organic Matter, Total Carbon, and Total Nitrogen in Salt Marshes Using UAS-Based Hyperspectral Imaging

IF 3.7 3区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES
Nayma Binte Nur, Charles M. Bachmann, Anna Christina Tyler, Avery Miller, Sayem Khan, Kimberly E. Union, Wendy A. Owens-Rios, Timothy D. Bauch, Christopher S. Lapszynski
{"title":"Mapping Soil Organic Matter, Total Carbon, and Total Nitrogen in Salt Marshes Using UAS-Based Hyperspectral Imaging","authors":"Nayma Binte Nur,&nbsp;Charles M. Bachmann,&nbsp;Anna Christina Tyler,&nbsp;Avery Miller,&nbsp;Sayem Khan,&nbsp;Kimberly E. Union,&nbsp;Wendy A. Owens-Rios,&nbsp;Timothy D. Bauch,&nbsp;Christopher S. Lapszynski","doi":"10.1029/2024JG008421","DOIUrl":null,"url":null,"abstract":"<p>Wetland ecosystems are critical to global carbon and nitrogen cycles. This study leverages unmanned aerial system (UAS)-based hyperspectral imaging to quantify soil organic matter (SOM), total carbon (C), and total nitrogen (N) in moderately to densely vegetated salt marshes at the Virginia Coast Reserve Long-Term Ecological Research (VCR-LTER) site. We utilized elastic net (ENet) regression and gradient-boosted regression trees (GBRT) within a hybrid modeling framework to predict these soil properties using features from the visible to near-infrared (VNIR) and shortwave infrared (SWIR) spectral ranges. Validated through a 1,000-iteration bootstrap analysis, the hybrid model demonstrated robust predictive capabilities. The model achieved mean normalized root mean square error of 0.118 for SOM, 0.127 for C, and 0.138 for N, with corresponding mean <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mi>R</mi>\n <mn>2</mn>\n </msup>\n </mrow>\n <annotation> ${R}^{2}$</annotation>\n </semantics></math> values of 0.874, 0.865, and 0.822, respectively. These outcomes highlight the efficacy of integrating advanced statistical methods with high-resolution remote sensing data to enhance soil property estimation in ecologically sensitive areas.</p>","PeriodicalId":16003,"journal":{"name":"Journal of Geophysical Research: Biogeosciences","volume":"130 6","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024JG008421","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Biogeosciences","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024JG008421","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Wetland ecosystems are critical to global carbon and nitrogen cycles. This study leverages unmanned aerial system (UAS)-based hyperspectral imaging to quantify soil organic matter (SOM), total carbon (C), and total nitrogen (N) in moderately to densely vegetated salt marshes at the Virginia Coast Reserve Long-Term Ecological Research (VCR-LTER) site. We utilized elastic net (ENet) regression and gradient-boosted regression trees (GBRT) within a hybrid modeling framework to predict these soil properties using features from the visible to near-infrared (VNIR) and shortwave infrared (SWIR) spectral ranges. Validated through a 1,000-iteration bootstrap analysis, the hybrid model demonstrated robust predictive capabilities. The model achieved mean normalized root mean square error of 0.118 for SOM, 0.127 for C, and 0.138 for N, with corresponding mean R 2 ${R}^{2}$ values of 0.874, 0.865, and 0.822, respectively. These outcomes highlight the efficacy of integrating advanced statistical methods with high-resolution remote sensing data to enhance soil property estimation in ecologically sensitive areas.

基于uas的盐沼土壤有机质、全碳和全氮高光谱成像研究
湿地生态系统对全球碳和氮循环至关重要。本研究利用基于无人机系统(UAS)的高光谱成像技术,量化了弗吉尼亚海岸保护区长期生态研究(vcr - ltter)站点中至密集植被盐沼的土壤有机质(SOM)、总碳(C)和总氮(N)。我们在混合建模框架中使用弹性网(ENet)回归和梯度增强回归树(GBRT),利用可见光到近红外(VNIR)和短波红外(SWIR)光谱范围的特征来预测这些土壤特性。通过1000次迭代的自举分析验证,混合模型显示出强大的预测能力。SOM、C和N的归一化均方根平均误差分别为0.118、0.127和0.138,对应的R 2 ${R}^{2}$均值分别为0.874、0.865和0.822。这些结果突出了将先进的统计方法与高分辨率遥感数据相结合,提高生态敏感区土壤性质估算的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Geophysical Research: Biogeosciences
Journal of Geophysical Research: Biogeosciences Earth and Planetary Sciences-Paleontology
CiteScore
6.60
自引率
5.40%
发文量
242
期刊介绍: JGR-Biogeosciences focuses on biogeosciences of the Earth system in the past, present, and future and the extension of this research to planetary studies. The emerging field of biogeosciences spans the intellectual interface between biology and the geosciences and attempts to understand the functions of the Earth system across multiple spatial and temporal scales. Studies in biogeosciences may use multiple lines of evidence drawn from diverse fields to gain a holistic understanding of terrestrial, freshwater, and marine ecosystems and extreme environments. Specific topics within the scope of the section include process-based theoretical, experimental, and field studies of biogeochemistry, biogeophysics, atmosphere-, land-, and ocean-ecosystem interactions, biomineralization, life in extreme environments, astrobiology, microbial processes, geomicrobiology, and evolutionary geobiology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信