The stable category of Gorenstein-projective modules over a monomial algebra

IF 1.2 2区 数学 Q1 MATHEMATICS
Takahiro Honma, Satoshi Usui
{"title":"The stable category of Gorenstein-projective modules over a monomial algebra","authors":"Takahiro Honma,&nbsp;Satoshi Usui","doi":"10.1112/jlms.70204","DOIUrl":null,"url":null,"abstract":"<p>Let <span></span><math>\n <semantics>\n <mi>Λ</mi>\n <annotation>$\\Lambda$</annotation>\n </semantics></math> be an arbitrary monomial algebra. We investigate the stable category <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <munder>\n <mo>Gproj</mo>\n <mo>̲</mo>\n </munder>\n <mi>Z</mi>\n </msup>\n <mi>Λ</mi>\n </mrow>\n <annotation>$\\underline{\\operatorname{Gproj}}^{\\mathbb {Z}}\\Lambda$</annotation>\n </semantics></math> of graded Gorenstein-projective <span></span><math>\n <semantics>\n <mi>Λ</mi>\n <annotation>$\\Lambda$</annotation>\n </semantics></math>-modules and the orbit category <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <munder>\n <mo>Gproj</mo>\n <mo>̲</mo>\n </munder>\n <mi>Z</mi>\n </msup>\n <mi>Λ</mi>\n <mo>/</mo>\n <mrow>\n <mo>(</mo>\n <mn>1</mn>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$\\underline{\\operatorname{Gproj}}^{\\mathbb {Z}}\\Lambda /(1)$</annotation>\n </semantics></math> induced by <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <munder>\n <mo>Gproj</mo>\n <mo>̲</mo>\n </munder>\n <mi>Z</mi>\n </msup>\n <mi>Λ</mi>\n </mrow>\n <annotation>$\\underline{\\operatorname{Gproj}}^{\\mathbb {Z}}\\Lambda$</annotation>\n </semantics></math> and the degree shift functor (1). We prove that <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <munder>\n <mo>Gproj</mo>\n <mo>̲</mo>\n </munder>\n <mi>Z</mi>\n </msup>\n <mi>Λ</mi>\n </mrow>\n <annotation>$\\underline{\\operatorname{Gproj}}^{\\mathbb {Z}}\\Lambda$</annotation>\n </semantics></math> is triangle equivalent to the bounded derived category of a path algebra of Dynkin type <span></span><math>\n <semantics>\n <mi>A</mi>\n <annotation>$\\mathbb {A}$</annotation>\n </semantics></math> and that <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <munder>\n <mo>Gproj</mo>\n <mo>̲</mo>\n </munder>\n <mi>Z</mi>\n </msup>\n <mi>Λ</mi>\n <mo>/</mo>\n <mrow>\n <mo>(</mo>\n <mn>1</mn>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$\\underline{\\operatorname{Gproj}}^{\\mathbb {Z}}\\Lambda /(1)$</annotation>\n </semantics></math> is triangle equivalent to the stable module category of a self-injective Nakayama algebra. Both the path algebra and the self-injective Nakayama algebra will be given explicitly. The latter result provides an explicit description of the stable category of (ungraded) Gorenstein-projective <span></span><math>\n <semantics>\n <mi>Λ</mi>\n <annotation>$\\Lambda$</annotation>\n </semantics></math>-modules.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"111 6","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2025-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the London Mathematical Society-Second Series","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/jlms.70204","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let Λ $\Lambda$ be an arbitrary monomial algebra. We investigate the stable category Gproj ̲ Z Λ $\underline{\operatorname{Gproj}}^{\mathbb {Z}}\Lambda$ of graded Gorenstein-projective Λ $\Lambda$ -modules and the orbit category Gproj ̲ Z Λ / ( 1 ) $\underline{\operatorname{Gproj}}^{\mathbb {Z}}\Lambda /(1)$ induced by Gproj ̲ Z Λ $\underline{\operatorname{Gproj}}^{\mathbb {Z}}\Lambda$ and the degree shift functor (1). We prove that Gproj ̲ Z Λ $\underline{\operatorname{Gproj}}^{\mathbb {Z}}\Lambda$ is triangle equivalent to the bounded derived category of a path algebra of Dynkin type A $\mathbb {A}$ and that Gproj ̲ Z Λ / ( 1 ) $\underline{\operatorname{Gproj}}^{\mathbb {Z}}\Lambda /(1)$ is triangle equivalent to the stable module category of a self-injective Nakayama algebra. Both the path algebra and the self-injective Nakayama algebra will be given explicitly. The latter result provides an explicit description of the stable category of (ungraded) Gorenstein-projective Λ $\Lambda$ -modules.

单项式代数上gorenstein -射影模的稳定范畴
设Λ $\Lambda$是一个任意的单项式代数。研究了梯度gorenstein -投影Λ $\Lambda$ -模块的稳定类Gproj Z Λ $\underline{\operatorname{Gproj}}^{\mathbb {Z}}\Lambda$和轨道类Gproj Z Λ / (1) $\underline{\operatorname{Gproj}}^{\mathbb {Z}}\Lambda /(1)$Λ $\underline{\operatorname{Gproj}}^{\mathbb {Z}}\Lambda$和度移函子(1)。证明了Gproj Z Λ $\underline{\operatorname{Gproj}}^{\mathbb {Z}}\Lambda$与Dynkin a型路径代数的有界派生范畴是三角形等价的$\mathbb {A}$Gproj Z Λ / (1) $\underline{\operatorname{Gproj}}^{\mathbb {Z}}\Lambda /(1)$是一个自内射中山代数的稳定模范畴的三角等价。明确地给出了路径代数和自内射中山代数。后一个结果提供了(未分级)gorenstein -投影Λ $\Lambda$ -模块的稳定范畴的明确描述。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
186
审稿时长
6-12 weeks
期刊介绍: The Journal of the London Mathematical Society has been publishing leading research in a broad range of mathematical subject areas since 1926. The Journal welcomes papers on subjects of general interest that represent a significant advance in mathematical knowledge, as well as submissions that are deemed to stimulate new interest and research activity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信