{"title":"The stable category of Gorenstein-projective modules over a monomial algebra","authors":"Takahiro Honma, Satoshi Usui","doi":"10.1112/jlms.70204","DOIUrl":null,"url":null,"abstract":"<p>Let <span></span><math>\n <semantics>\n <mi>Λ</mi>\n <annotation>$\\Lambda$</annotation>\n </semantics></math> be an arbitrary monomial algebra. We investigate the stable category <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <munder>\n <mo>Gproj</mo>\n <mo>̲</mo>\n </munder>\n <mi>Z</mi>\n </msup>\n <mi>Λ</mi>\n </mrow>\n <annotation>$\\underline{\\operatorname{Gproj}}^{\\mathbb {Z}}\\Lambda$</annotation>\n </semantics></math> of graded Gorenstein-projective <span></span><math>\n <semantics>\n <mi>Λ</mi>\n <annotation>$\\Lambda$</annotation>\n </semantics></math>-modules and the orbit category <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <munder>\n <mo>Gproj</mo>\n <mo>̲</mo>\n </munder>\n <mi>Z</mi>\n </msup>\n <mi>Λ</mi>\n <mo>/</mo>\n <mrow>\n <mo>(</mo>\n <mn>1</mn>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$\\underline{\\operatorname{Gproj}}^{\\mathbb {Z}}\\Lambda /(1)$</annotation>\n </semantics></math> induced by <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <munder>\n <mo>Gproj</mo>\n <mo>̲</mo>\n </munder>\n <mi>Z</mi>\n </msup>\n <mi>Λ</mi>\n </mrow>\n <annotation>$\\underline{\\operatorname{Gproj}}^{\\mathbb {Z}}\\Lambda$</annotation>\n </semantics></math> and the degree shift functor (1). We prove that <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <munder>\n <mo>Gproj</mo>\n <mo>̲</mo>\n </munder>\n <mi>Z</mi>\n </msup>\n <mi>Λ</mi>\n </mrow>\n <annotation>$\\underline{\\operatorname{Gproj}}^{\\mathbb {Z}}\\Lambda$</annotation>\n </semantics></math> is triangle equivalent to the bounded derived category of a path algebra of Dynkin type <span></span><math>\n <semantics>\n <mi>A</mi>\n <annotation>$\\mathbb {A}$</annotation>\n </semantics></math> and that <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <munder>\n <mo>Gproj</mo>\n <mo>̲</mo>\n </munder>\n <mi>Z</mi>\n </msup>\n <mi>Λ</mi>\n <mo>/</mo>\n <mrow>\n <mo>(</mo>\n <mn>1</mn>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$\\underline{\\operatorname{Gproj}}^{\\mathbb {Z}}\\Lambda /(1)$</annotation>\n </semantics></math> is triangle equivalent to the stable module category of a self-injective Nakayama algebra. Both the path algebra and the self-injective Nakayama algebra will be given explicitly. The latter result provides an explicit description of the stable category of (ungraded) Gorenstein-projective <span></span><math>\n <semantics>\n <mi>Λ</mi>\n <annotation>$\\Lambda$</annotation>\n </semantics></math>-modules.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"111 6","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2025-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the London Mathematical Society-Second Series","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/jlms.70204","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Let be an arbitrary monomial algebra. We investigate the stable category of graded Gorenstein-projective -modules and the orbit category induced by and the degree shift functor (1). We prove that is triangle equivalent to the bounded derived category of a path algebra of Dynkin type and that is triangle equivalent to the stable module category of a self-injective Nakayama algebra. Both the path algebra and the self-injective Nakayama algebra will be given explicitly. The latter result provides an explicit description of the stable category of (ungraded) Gorenstein-projective -modules.
期刊介绍:
The Journal of the London Mathematical Society has been publishing leading research in a broad range of mathematical subject areas since 1926. The Journal welcomes papers on subjects of general interest that represent a significant advance in mathematical knowledge, as well as submissions that are deemed to stimulate new interest and research activity.