Andrew T. Crombie, Chloe L. Wright, Ornella Carrión, Laura E. Lehtovirta-Morley, J. Colin Murrell
{"title":"Isoprene Production by Sphagnum Moss Is Balanced by Microbial Uptake, as Revealed by Selective Inhibitors","authors":"Andrew T. Crombie, Chloe L. Wright, Ornella Carrión, Laura E. Lehtovirta-Morley, J. Colin Murrell","doi":"10.1111/1462-2920.70114","DOIUrl":null,"url":null,"abstract":"<p>Northern peatlands, ecosystems which store enormous amounts of carbon, and yet are major sources of methane and plant-derived volatiles including isoprene, are predicted to be greatly affected by climate change. Isoprene, the major volatile secondary metabolite released by plants, can support the carbon and energy needs of a variety of bacteria. Here we show that <i>Sphagnum</i> moss from an acidic bog harboured highly active isoprene degraders which consumed the vast majority of the plant-produced isoprene, preventing its release to the atmosphere. We quantified the potential for microbial isoprene uptake in the moss and, using alkyne inhibitors specific to either isoprene monooxygenase of <i>bona fide</i> isoprene degraders, or to the enzymes of other microbes capable of its fortuitous co-oxidation, we show that methane utilizers, for example, did not oxidise significant isoprene in incubations. Our technique enabled the separate quantification of plant isoprene production and microbial uptake, revealing that although atmospheric isoprene concentrations are typically low, the microbes contained in, or in close association with the moss were capable of isoprene uptake at the plant-generated isoprene concentration. Analysis of the bacterial community suggested that the isoprene degraders in this environment belonged to novel groups distinct from extant strains with this capability.</p>","PeriodicalId":11898,"journal":{"name":"Environmental microbiology","volume":"27 6","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2025-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1462-2920.70114","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental microbiology","FirstCategoryId":"99","ListUrlMain":"https://enviromicro-journals.onlinelibrary.wiley.com/doi/10.1111/1462-2920.70114","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Northern peatlands, ecosystems which store enormous amounts of carbon, and yet are major sources of methane and plant-derived volatiles including isoprene, are predicted to be greatly affected by climate change. Isoprene, the major volatile secondary metabolite released by plants, can support the carbon and energy needs of a variety of bacteria. Here we show that Sphagnum moss from an acidic bog harboured highly active isoprene degraders which consumed the vast majority of the plant-produced isoprene, preventing its release to the atmosphere. We quantified the potential for microbial isoprene uptake in the moss and, using alkyne inhibitors specific to either isoprene monooxygenase of bona fide isoprene degraders, or to the enzymes of other microbes capable of its fortuitous co-oxidation, we show that methane utilizers, for example, did not oxidise significant isoprene in incubations. Our technique enabled the separate quantification of plant isoprene production and microbial uptake, revealing that although atmospheric isoprene concentrations are typically low, the microbes contained in, or in close association with the moss were capable of isoprene uptake at the plant-generated isoprene concentration. Analysis of the bacterial community suggested that the isoprene degraders in this environment belonged to novel groups distinct from extant strains with this capability.
期刊介绍:
Environmental Microbiology provides a high profile vehicle for publication of the most innovative, original and rigorous research in the field. The scope of the Journal encompasses the diversity of current research on microbial processes in the environment, microbial communities, interactions and evolution and includes, but is not limited to, the following:
the structure, activities and communal behaviour of microbial communities
microbial community genetics and evolutionary processes
microbial symbioses, microbial interactions and interactions with plants, animals and abiotic factors
microbes in the tree of life, microbial diversification and evolution
population biology and clonal structure
microbial metabolic and structural diversity
microbial physiology, growth and survival
microbes and surfaces, adhesion and biofouling
responses to environmental signals and stress factors
modelling and theory development
pollution microbiology
extremophiles and life in extreme and unusual little-explored habitats
element cycles and biogeochemical processes, primary and secondary production
microbes in a changing world, microbially-influenced global changes
evolution and diversity of archaeal and bacterial viruses
new technological developments in microbial ecology and evolution, in particular for the study of activities of microbial communities, non-culturable microorganisms and emerging pathogens