Yijing Pan, Shunshun Wang, Guoliang Duan, Jiaqin Wu, Fan Feng, Lin Chen, Anzheng Li, Kang Xu, Chunli Wang, Shibing Fan
{"title":"Natural Product Daidzin Inhibits Glioma Development via Suppressing the LRP5-Mediated GSK-3β/c-Myc Signaling Pathway","authors":"Yijing Pan, Shunshun Wang, Guoliang Duan, Jiaqin Wu, Fan Feng, Lin Chen, Anzheng Li, Kang Xu, Chunli Wang, Shibing Fan","doi":"10.1002/biof.70025","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Daidzin (DZN) is a natural flavonoid compound derived from soybeans that has recently been recognized for its potential antitumor properties. In traditional Chinese medicine, soybeans and their extracts are extensively used to prevent and treat various diseases. To evaluate the therapeutic efficacy of DZN on human glioblastoma through in vivo and in vitro experiments, and through multi-omics analyses to elucidate potential molecular mechanisms. Cell viability of LN-229 and U-87MG glioblastoma cells was assessed using the CCK-8 assay. Protein and mRNA levels of proliferation and apoptosis-related genes were analyzed via Western blotting and qPCR. Metabolomics and transcriptomics identified key pathways and targets, which were confirmed by in-cell Western blotting and expression correlation analysis. The in vivo antitumor effects of DZN were evaluated in nude mice with LN-229 tumors. DZN treatment reduced cell viability, migration, and survival in a dose-dependent manner, demonstrating strong antitumor effects in both in vitro and in vivo models. Multi-omics analysis identified amino acid metabolism and ubiquitin-mediated proteolysis as key mechanisms. Bioinformatics highlighted LRP5 as a prognostic biomarker in glioblastoma. DZN decreased LRP5 activity, downregulated p-GSK-3<i>β</i>, and promoted c-Myc degradation, thereby inhibiting the Wnt signaling pathway. In vivo, DZN significantly reduced tumor size and Ki67 expression. These findings highlight LRP5 as a promising therapeutic target, with DZN emerging as a potent LRP5 inhibitor and exhibiting significant antitumor effects in glioblastoma.</p>\n </div>","PeriodicalId":8923,"journal":{"name":"BioFactors","volume":"51 3","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2025-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BioFactors","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/biof.70025","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Daidzin (DZN) is a natural flavonoid compound derived from soybeans that has recently been recognized for its potential antitumor properties. In traditional Chinese medicine, soybeans and their extracts are extensively used to prevent and treat various diseases. To evaluate the therapeutic efficacy of DZN on human glioblastoma through in vivo and in vitro experiments, and through multi-omics analyses to elucidate potential molecular mechanisms. Cell viability of LN-229 and U-87MG glioblastoma cells was assessed using the CCK-8 assay. Protein and mRNA levels of proliferation and apoptosis-related genes were analyzed via Western blotting and qPCR. Metabolomics and transcriptomics identified key pathways and targets, which were confirmed by in-cell Western blotting and expression correlation analysis. The in vivo antitumor effects of DZN were evaluated in nude mice with LN-229 tumors. DZN treatment reduced cell viability, migration, and survival in a dose-dependent manner, demonstrating strong antitumor effects in both in vitro and in vivo models. Multi-omics analysis identified amino acid metabolism and ubiquitin-mediated proteolysis as key mechanisms. Bioinformatics highlighted LRP5 as a prognostic biomarker in glioblastoma. DZN decreased LRP5 activity, downregulated p-GSK-3β, and promoted c-Myc degradation, thereby inhibiting the Wnt signaling pathway. In vivo, DZN significantly reduced tumor size and Ki67 expression. These findings highlight LRP5 as a promising therapeutic target, with DZN emerging as a potent LRP5 inhibitor and exhibiting significant antitumor effects in glioblastoma.
期刊介绍:
BioFactors, a journal of the International Union of Biochemistry and Molecular Biology, is devoted to the rapid publication of highly significant original research articles and reviews in experimental biology in health and disease.
The word “biofactors” refers to the many compounds that regulate biological functions. Biological factors comprise many molecules produced or modified by living organisms, and present in many essential systems like the blood, the nervous or immunological systems. A non-exhaustive list of biological factors includes neurotransmitters, cytokines, chemokines, hormones, coagulation factors, transcription factors, signaling molecules, receptor ligands and many more. In the group of biofactors we can accommodate several classical molecules not synthetized in the body such as vitamins, micronutrients or essential trace elements.
In keeping with this unified view of biochemistry, BioFactors publishes research dealing with the identification of new substances and the elucidation of their functions at the biophysical, biochemical, cellular and human level as well as studies revealing novel functions of already known biofactors. The journal encourages the submission of studies that use biochemistry, biophysics, cell and molecular biology and/or cell signaling approaches.