{"title":"Multi-Area Controllable Suppression Jamming Method Against SAR Based on Two-Dimensional Phase Mismatch","authors":"Guangyuan Li, GuiKun Liu, Zhenyang Xu, Haoming Xu, Zhengshuai Li, Peng Wang, Yueyang Zhang, Liang Li","doi":"10.1049/rsn2.70040","DOIUrl":null,"url":null,"abstract":"<p>In the imaging process of SAR, the secondary phase mismatch can cause image defocusing. In this paper, a suppression jamming method against SAR based on two-dimensional (2D) phase mismatch is proposed through a designed jammer system. By extracting and resampling the intercepted radar signal through the designed jammer, the bandwidth of the linear frequency modulation (LFM) signal can be changed, which causes defocusing in the range dimension after matching filtering. Azimuth phase mismatch is achieved through velocity mismatch, which leads to azimuth defocusing after azimuth matching filtering. Efficient coverage of multiple dispersed important regions can be achieved by adjusting the parameters of jamming targets reasonably, such as modulation bandwidth, azimuth velocity, jamming positions and jamming power. Theoretical analysis is conducted on the implementation of the algorithm and its 2-D controllability in terms of jamming location and jamming area, as well as the required jamming power. The correctness of the theoretical model is verified by simulation results of spaceborne SAR. This method is quite simple to implement and can achieve efficient coverage of multiple dispersed targets, providing a basis for the implementation and application of SAR jamming in active radar responders.</p>","PeriodicalId":50377,"journal":{"name":"Iet Radar Sonar and Navigation","volume":"19 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2025-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/rsn2.70040","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iet Radar Sonar and Navigation","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/rsn2.70040","RegionNum":4,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
In the imaging process of SAR, the secondary phase mismatch can cause image defocusing. In this paper, a suppression jamming method against SAR based on two-dimensional (2D) phase mismatch is proposed through a designed jammer system. By extracting and resampling the intercepted radar signal through the designed jammer, the bandwidth of the linear frequency modulation (LFM) signal can be changed, which causes defocusing in the range dimension after matching filtering. Azimuth phase mismatch is achieved through velocity mismatch, which leads to azimuth defocusing after azimuth matching filtering. Efficient coverage of multiple dispersed important regions can be achieved by adjusting the parameters of jamming targets reasonably, such as modulation bandwidth, azimuth velocity, jamming positions and jamming power. Theoretical analysis is conducted on the implementation of the algorithm and its 2-D controllability in terms of jamming location and jamming area, as well as the required jamming power. The correctness of the theoretical model is verified by simulation results of spaceborne SAR. This method is quite simple to implement and can achieve efficient coverage of multiple dispersed targets, providing a basis for the implementation and application of SAR jamming in active radar responders.
期刊介绍:
IET Radar, Sonar & Navigation covers the theory and practice of systems and signals for radar, sonar, radiolocation, navigation, and surveillance purposes, in aerospace and terrestrial applications.
Examples include advances in waveform design, clutter and detection, electronic warfare, adaptive array and superresolution methods, tracking algorithms, synthetic aperture, and target recognition techniques.