Accelerated Boundary Integral Solution of 3-D Maxwell’s Equations Using the Interpolated Factored Green Function Method

IF 5.8 1区 计算机科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Jagabandhu Paul;Constantine Sideris
{"title":"Accelerated Boundary Integral Solution of 3-D Maxwell’s Equations Using the Interpolated Factored Green Function Method","authors":"Jagabandhu Paul;Constantine Sideris","doi":"10.1109/TAP.2025.3540288","DOIUrl":null,"url":null,"abstract":"This article presents an <inline-formula> <tex-math>$\\mathcal {O}(N\\log N)$ </tex-math></inline-formula> method for the numerical solution of Maxwell’s equations for dielectric scatterers using a 3-D boundary integral equation (BIE) method. The underlying BIE method used is based on a hybrid Nyström collocation method using Chebyshev polynomials. It is well known that such an approach produces a dense linear system, which requires <inline-formula> <tex-math>$\\mathcal {O}(N^{2})$ </tex-math></inline-formula> operations in each step of an iterative solver. In this work, we propose an approach using the recently introduced Interpolated Factored Green Function (IFGF) acceleration strategy to reduce the cost of each iteration to <inline-formula> <tex-math>$\\mathcal {O}(N\\log N)$ </tex-math></inline-formula>. To the best of our knowledge, this article presents the first-ever application of the IFGF method to fully vectorial 3-D Maxwell problems. The Chebyshev-based integral solver and IFGF method are first introduced, followed by the extension of the scalar IFGF to the full-vectorial Maxwell case. Several examples are presented, verifying the <inline-formula> <tex-math>$\\mathcal {O}(N\\log N)$ </tex-math></inline-formula> computational complexity of the approach, including scattering from spheres, complex computer-aided design (CAD) models, and nanophotonic waveguiding devices. In one particular example with more than 6 million unknowns, the accelerated IFGF solver runs <inline-formula> <tex-math>$42\\times $ </tex-math></inline-formula> faster than the unaccelerated method.","PeriodicalId":13102,"journal":{"name":"IEEE Transactions on Antennas and Propagation","volume":"73 6","pages":"3814-3826"},"PeriodicalIF":5.8000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Antennas and Propagation","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10890905/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

This article presents an $\mathcal {O}(N\log N)$ method for the numerical solution of Maxwell’s equations for dielectric scatterers using a 3-D boundary integral equation (BIE) method. The underlying BIE method used is based on a hybrid Nyström collocation method using Chebyshev polynomials. It is well known that such an approach produces a dense linear system, which requires $\mathcal {O}(N^{2})$ operations in each step of an iterative solver. In this work, we propose an approach using the recently introduced Interpolated Factored Green Function (IFGF) acceleration strategy to reduce the cost of each iteration to $\mathcal {O}(N\log N)$ . To the best of our knowledge, this article presents the first-ever application of the IFGF method to fully vectorial 3-D Maxwell problems. The Chebyshev-based integral solver and IFGF method are first introduced, followed by the extension of the scalar IFGF to the full-vectorial Maxwell case. Several examples are presented, verifying the $\mathcal {O}(N\log N)$ computational complexity of the approach, including scattering from spheres, complex computer-aided design (CAD) models, and nanophotonic waveguiding devices. In one particular example with more than 6 million unknowns, the accelerated IFGF solver runs $42\times $ faster than the unaccelerated method.
用插值格林函数法加速求解三维麦克斯韦方程组的边界积分
本文提出了一种用三维边界积分方程(BIE)方法求解介电散射体麦克斯韦方程组的$\mathcal {O}(N\log N)$方法。所使用的底层BIE方法是基于使用Chebyshev多项式的混合Nyström搭配方法。众所周知,这种方法会产生一个密集的线性系统,在迭代求解器的每一步都需要$\mathcal {O}(N^{2})$运算。在这项工作中,我们提出了一种使用最近引入的插值因子绿色函数(IFGF)加速策略的方法,将每次迭代的成本降低到$\mathcal {O}(N\log N)$。据我们所知,本文首次将IFGF方法应用于全矢量三维Maxwell问题。首先介绍了基于chebyhev的积分求解方法和IFGF方法,然后将标量IFGF推广到全矢量Maxwell情况。给出了几个例子,验证了该方法的计算复杂度,包括球体散射、复杂的计算机辅助设计(CAD)模型和纳米光子波导器件。在一个超过600万个未知数的特定示例中,加速的IFGF求解器比未加速的方法运行速度快42倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
10.40
自引率
28.10%
发文量
968
审稿时长
4.7 months
期刊介绍: IEEE Transactions on Antennas and Propagation includes theoretical and experimental advances in antennas, including design and development, and in the propagation of electromagnetic waves, including scattering, diffraction, and interaction with continuous media; and applications pertaining to antennas and propagation, such as remote sensing, applied optics, and millimeter and submillimeter wave techniques
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信