Wafer-Scale Dry-Transfer of Single-Crystalline Transition Metal Dichalcogenides

IF 27.4 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Jichuang Shen, Xiang Xu, Wenhao Li, Tong Jiang, Xuechun Sun, Han Chen, Chen Ji, Lida Yu, Jingnan Dong, Tongbo Wei, Huaze Zhu, Wei Kong
{"title":"Wafer-Scale Dry-Transfer of Single-Crystalline Transition Metal Dichalcogenides","authors":"Jichuang Shen, Xiang Xu, Wenhao Li, Tong Jiang, Xuechun Sun, Han Chen, Chen Ji, Lida Yu, Jingnan Dong, Tongbo Wei, Huaze Zhu, Wei Kong","doi":"10.1002/adma.202504223","DOIUrl":null,"url":null,"abstract":"The twisting and stacking of 2D materials have emerged as transformative strategies for discovering novel physical phenomena and designing advanced materials and devices. A significant challenge, however, is achieving pristine interfaces with precise angular control while maintaining the long-range order over large areas. In this work, a novel dry-transfer method is presented that enables the ultra-clean integration of epitaxial, single-crystalline transition metal dichalcogenides (TMDCs) via vacuum thermocompression bonding (VTCB). This technique facilitates the fabrication of wafer-scale twisting and stacking of single-crystalline TMDCs to form homo-and heterostructures with intrinsic material properties and precise angular control. The layer-by-layer reconstruction of single-crystalline multilayer 2H-and 3R-MoS<sub>2</sub> is demonstrated, with structural, electrical, and optical properties comparable to those of the bulk counterpart. Furthermore, the approach is fully compatible with standard semiconductor fabrication workflows and equipment, offering a scalable pathway for automated high-throughput fabrication. This findings provide a new avenue for the large-scale production of multi-stacked materials and twist-electronic device arrays.","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":"9 1","pages":""},"PeriodicalIF":27.4000,"publicationDate":"2025-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adma.202504223","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The twisting and stacking of 2D materials have emerged as transformative strategies for discovering novel physical phenomena and designing advanced materials and devices. A significant challenge, however, is achieving pristine interfaces with precise angular control while maintaining the long-range order over large areas. In this work, a novel dry-transfer method is presented that enables the ultra-clean integration of epitaxial, single-crystalline transition metal dichalcogenides (TMDCs) via vacuum thermocompression bonding (VTCB). This technique facilitates the fabrication of wafer-scale twisting and stacking of single-crystalline TMDCs to form homo-and heterostructures with intrinsic material properties and precise angular control. The layer-by-layer reconstruction of single-crystalline multilayer 2H-and 3R-MoS2 is demonstrated, with structural, electrical, and optical properties comparable to those of the bulk counterpart. Furthermore, the approach is fully compatible with standard semiconductor fabrication workflows and equipment, offering a scalable pathway for automated high-throughput fabrication. This findings provide a new avenue for the large-scale production of multi-stacked materials and twist-electronic device arrays.

Abstract Image

单晶过渡金属二硫族化合物的晶片尺度干转移
二维材料的扭曲和堆叠已经成为发现新的物理现象和设计先进材料和设备的变革性策略。然而,一个重大的挑战是在保持大范围内的远程秩序的同时,实现精确角度控制的原始界面。在这项工作中,提出了一种新的干转移方法,通过真空热压键合(VTCB)实现外延单晶过渡金属二硫族化合物(TMDCs)的超清洁集成。该技术有助于单晶TMDCs的晶圆级扭曲和堆叠,形成具有固有材料特性和精确角度控制的同质和异质结构。单晶多层2h -和3R-MoS2的逐层重建被证明,具有结构,电学和光学性质与那些块状对应物相当。此外,该方法与标准半导体制造工作流程和设备完全兼容,为自动化高通量制造提供了可扩展的途径。这一发现为大规模生产多堆叠材料和扭曲电子器件阵列提供了新的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Materials
Advanced Materials 工程技术-材料科学:综合
CiteScore
43.00
自引率
4.10%
发文量
2182
审稿时长
2 months
期刊介绍: Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信