Tailoring Pt-Ni/Fe Coordination in Single-Atom Pt/NiFe LDH With Facile Synthesis for Efficient and Long-Term Alkaline Water Electrolysis

IF 13 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Small Pub Date : 2025-06-05 DOI:10.1002/smll.202504076
Zi-Ye Liu, Jiu-Jiu Ge, Lei Yu, Sian-Hong Ong, Lian-Jian Zhang, Ji-Ming Hu
{"title":"Tailoring Pt-Ni/Fe Coordination in Single-Atom Pt/NiFe LDH With Facile Synthesis for Efficient and Long-Term Alkaline Water Electrolysis","authors":"Zi-Ye Liu, Jiu-Jiu Ge, Lei Yu, Sian-Hong Ong, Lian-Jian Zhang, Ji-Ming Hu","doi":"10.1002/smll.202504076","DOIUrl":null,"url":null,"abstract":"Efficient and durable alkaline water electrolysis at industrial current densities remains a key challenge due to sluggish oxygen evolution kinetics and poor stability of hydrogen evolution reaction (HER) catalysts in alkaline media. Herein, a unique Pt–Ni/Fe coordinated single-atom Pt catalyst anchored on nickel-iron layered double hydroxide (ePt/NiFe LDH), is reported synthesized via a facile electrodeposition process within 30 min. Unlike the conventional Pt-O-M (metal) coordination, the newly discovered Pt–Ni/Fe bonding structure significantly modulates the electronic structure of the NiFe active sites, thereby synergistically enhancing both HER and OER activities. Benefiting from this optimized coordination environment and the nanoflower architecture, the ePt/NiFe LDH@e-nf electrode delivers outstanding overall water splitting performance, achieving a low cell voltage of 1.42 V at 10 mA cm<sup>−2</sup> and 1.54 V at 100 mA cm<sup>−2</sup> without iR compensation. More importantly, it maintains ultrastable operation over 1440 h at an industrial-level current density of 500 mA cm<sup>−2</sup>, outperforming commercial Pt/C–RuO₂ benchmarks. This work demonstrates a promising strategy for designing high-performance and durable single-atom catalysts for practical alkaline water electrolysis applications.","PeriodicalId":228,"journal":{"name":"Small","volume":"125 1","pages":""},"PeriodicalIF":13.0000,"publicationDate":"2025-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smll.202504076","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Efficient and durable alkaline water electrolysis at industrial current densities remains a key challenge due to sluggish oxygen evolution kinetics and poor stability of hydrogen evolution reaction (HER) catalysts in alkaline media. Herein, a unique Pt–Ni/Fe coordinated single-atom Pt catalyst anchored on nickel-iron layered double hydroxide (ePt/NiFe LDH), is reported synthesized via a facile electrodeposition process within 30 min. Unlike the conventional Pt-O-M (metal) coordination, the newly discovered Pt–Ni/Fe bonding structure significantly modulates the electronic structure of the NiFe active sites, thereby synergistically enhancing both HER and OER activities. Benefiting from this optimized coordination environment and the nanoflower architecture, the ePt/NiFe LDH@e-nf electrode delivers outstanding overall water splitting performance, achieving a low cell voltage of 1.42 V at 10 mA cm−2 and 1.54 V at 100 mA cm−2 without iR compensation. More importantly, it maintains ultrastable operation over 1440 h at an industrial-level current density of 500 mA cm−2, outperforming commercial Pt/C–RuO₂ benchmarks. This work demonstrates a promising strategy for designing high-performance and durable single-atom catalysts for practical alkaline water electrolysis applications.

Abstract Image

快速合成单原子Pt/NiFe LDH中Pt- ni /Fe配位的高效和长期碱性电解
由于析氧动力学迟缓和析氢反应(HER)催化剂在碱性介质中的稳定性差,在工业电流密度下高效、持久的碱性电解仍然是一个关键挑战。本文报道了一种独特的Pt- ni /Fe配位单原子Pt催化剂,锚定在镍铁层状双氢氧化物(ePt/NiFe LDH)上,通过简单的电沉积工艺在30分钟内合成。与传统的Pt- o - m(金属)配位不同,新发现的Pt- ni /Fe键合结构显著调节了NiFe活性位点的电子结构,从而协同提高了HER和OER活性。得益于这种优化的配位环境和纳米花结构,ePt/NiFe LDH@e-nf电极具有出色的整体水分解性能,在无iR补偿的情况下,在10 mA cm - 2和100 mA cm - 2的低电池电压分别为1.42 V和1.54 V。更重要的是,它在500毫安厘米−2的工业级电流密度下保持超过1440小时的超稳定运行,优于商业Pt/ C-RuO₂基准。这项工作为设计高性能、耐用的碱性水电解单原子催化剂提供了一种有前途的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Small
Small 工程技术-材料科学:综合
CiteScore
17.70
自引率
3.80%
发文量
1830
审稿时长
2.1 months
期刊介绍: Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments. With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology. Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信