Emerging mechanically interlocked cages

IF 38.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Enping Du, Xianhui Tang, Wenqiang Zhang, Jinqiao Dong, Yong Cui, Yan Liu
{"title":"Emerging mechanically interlocked cages","authors":"Enping Du, Xianhui Tang, Wenqiang Zhang, Jinqiao Dong, Yong Cui, Yan Liu","doi":"10.1038/s41570-025-00721-7","DOIUrl":null,"url":null,"abstract":"<p>Mechanically interlocked molecules, including catenanes, rotaxanes and knots, are an intriguing class of synthetic targets with potential applications in molecular switches and machines. Although mechanically interlocked molecules are typically constructed using macrocyclic frameworks, the interlocking of two or more three-dimensional, shape-persistent cages remains relatively underexplored. Recent advances have accelerated the development of mechanically interlocked cages (MICs), which consist of interlocked three-dimensional molecular cages rather than macrocycles. Despite their potential in areas such as molecular recognition, separation and catalysis, the design and synthesis of MICs remain challenging. This Review examines the synthetic strategies used to construct MICs, along with their interlocked architecture characteristics, structural dynamics and potential applications. Special attention is given to the guest-binding properties and catalytic performance of monomeric versus catenated cages. We conclude with perspectives on the current challenges and opportunities for future development of MICs.</p><figure></figure>","PeriodicalId":18849,"journal":{"name":"Nature reviews. Chemistry","volume":"26 1","pages":""},"PeriodicalIF":38.1000,"publicationDate":"2025-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature reviews. Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1038/s41570-025-00721-7","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Mechanically interlocked molecules, including catenanes, rotaxanes and knots, are an intriguing class of synthetic targets with potential applications in molecular switches and machines. Although mechanically interlocked molecules are typically constructed using macrocyclic frameworks, the interlocking of two or more three-dimensional, shape-persistent cages remains relatively underexplored. Recent advances have accelerated the development of mechanically interlocked cages (MICs), which consist of interlocked three-dimensional molecular cages rather than macrocycles. Despite their potential in areas such as molecular recognition, separation and catalysis, the design and synthesis of MICs remain challenging. This Review examines the synthetic strategies used to construct MICs, along with their interlocked architecture characteristics, structural dynamics and potential applications. Special attention is given to the guest-binding properties and catalytic performance of monomeric versus catenated cages. We conclude with perspectives on the current challenges and opportunities for future development of MICs.

Abstract Image

出现机械联锁的笼子
机械互锁分子,包括链烷、轮烷和结,是一类有趣的合成靶点,在分子开关和机器中具有潜在的应用前景。虽然机械互锁分子通常是使用大环框架构建的,但两个或多个三维的互锁,形状持久的笼子仍然相对较少被探索。最近的进展加速了机械互锁笼(MICs)的发展,它由互锁的三维分子笼组成,而不是大环。尽管MICs在分子识别、分离和催化等领域具有潜力,但其设计和合成仍然具有挑战性。本文综述了用于构建MICs的综合策略,以及它们的连锁结构特征、结构动力学和潜在应用。特别注意的客人结合性能和催化性能的单体笼与链链笼。最后,我们展望了中等收入国家未来发展面临的挑战和机遇。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature reviews. Chemistry
Nature reviews. Chemistry Chemical Engineering-General Chemical Engineering
CiteScore
52.80
自引率
0.80%
发文量
88
期刊介绍: Nature Reviews Chemistry is an online-only journal that publishes Reviews, Perspectives, and Comments on various disciplines within chemistry. The Reviews aim to offer balanced and objective analyses of selected topics, providing clear descriptions of relevant scientific literature. The content is designed to be accessible to recent graduates in any chemistry-related discipline while also offering insights for principal investigators and industry-based research scientists. Additionally, Reviews should provide the authors' perspectives on future directions and opinions regarding the major challenges faced by researchers in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信