ZxNHX1 from a xerophyte outperforms AtNHX1 in sequestering Na+ into vacuoles to enhance plant stress resistance and yield

IF 10.1 1区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Hai‐Shuang Liu, Qin Liu, Shelley R. Hepworth, Pei‐Qin Li, Jie Huang, Rui‐Xin Zhang, Cui‐Min Ma, Tian‐Ge Gao, Hong‐Ping Ma, Jin Ke, Ai‐Ke Bao, Hong‐Ju Yin, Timothy J. Flowers, Sheng Luan, Qing Ma, Suo‐Min Wang
{"title":"ZxNHX1 from a xerophyte outperforms AtNHX1 in sequestering Na+ into vacuoles to enhance plant stress resistance and yield","authors":"Hai‐Shuang Liu, Qin Liu, Shelley R. Hepworth, Pei‐Qin Li, Jie Huang, Rui‐Xin Zhang, Cui‐Min Ma, Tian‐Ge Gao, Hong‐Ping Ma, Jin Ke, Ai‐Ke Bao, Hong‐Ju Yin, Timothy J. Flowers, Sheng Luan, Qing Ma, Suo‐Min Wang","doi":"10.1111/pbi.70163","DOIUrl":null,"url":null,"abstract":"SummaryUncovering the mechanisms underlying stress‐resistant traits in xerophytes thriving in harsh environments can aid the genetic improvement of crops. The xerophyte <jats:italic>Zygophyllum xanthoxylum</jats:italic> features high Na<jats:sup>+</jats:sup> accumulation in leaves, mediated by the vacuolar antiporter ZxNHX1. Co‐expression of <jats:italic>ZxNHX1</jats:italic> and vacuolar H<jats:sup>+</jats:sup>‐PPase gene <jats:italic>ZxVP1‐1</jats:italic> has been demonstrated to enhance the stress resistance and biomass of alfalfa. However, it remains unknown if ZxNHX1 outperforms its homologues from the Na<jats:sup>+</jats:sup>‐excluding and stress‐sensitive glycophytes such as Arabidopsis in enhancing plant stress resistance and yield. Here, we found that expression of <jats:italic>ZxNHX1</jats:italic> conferred superior growth under salt stress in alfalfa, compared to the Arabidopsis homologue AtNHX1. When expressed in yeast, ZxNHX1 displays stronger Na<jats:sup>+</jats:sup>/H<jats:sup>+</jats:sup> but weaker K<jats:sup>+</jats:sup>/H<jats:sup>+</jats:sup> exchange activity than AtNHX1. Under both K<jats:sup>+</jats:sup> sufficient and deficient conditions, an Arabidopsis <jats:italic>atnhx1‐1</jats:italic> mutant expressing <jats:italic>ZxNHX1</jats:italic> accumulated higher Na<jats:sup>+</jats:sup> and lower K<jats:sup>+</jats:sup> concentrations, with more Na<jats:sup>+</jats:sup> being sequestered into vacuoles and a larger proportion of K<jats:sup>+</jats:sup> retained in the cytosol. This optimized cellular ion distribution ensures energy‐conserving osmotic adjustment, leading to stronger stress resistance and higher biomass than plants expressing <jats:italic>AtNHX1</jats:italic>. Moreover, ZxNHX1 governed the root uptake and root‐to‐leaf transport of Na<jats:sup>+</jats:sup> at the whole‐plant level, whereas AtNHX1 acted mainly in K<jats:sup>+</jats:sup> transport processes. We also identified a polar residue Thr265 in a membrane‐spanning region of ZxNHX1 that influences its Na<jats:sup>+</jats:sup> and K<jats:sup>+</jats:sup> selectivity. These findings reveal a new energy‐conserving, Na<jats:sup>+</jats:sup>‐based osmotic adjustment mechanism that can enhance crop stress resistance without sacrificing yield, providing an effective way for utilizing saline soils to expand crop production into marginal lands.","PeriodicalId":221,"journal":{"name":"Plant Biotechnology Journal","volume":"52 1","pages":""},"PeriodicalIF":10.1000,"publicationDate":"2025-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Biotechnology Journal","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1111/pbi.70163","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

SummaryUncovering the mechanisms underlying stress‐resistant traits in xerophytes thriving in harsh environments can aid the genetic improvement of crops. The xerophyte Zygophyllum xanthoxylum features high Na+ accumulation in leaves, mediated by the vacuolar antiporter ZxNHX1. Co‐expression of ZxNHX1 and vacuolar H+‐PPase gene ZxVP1‐1 has been demonstrated to enhance the stress resistance and biomass of alfalfa. However, it remains unknown if ZxNHX1 outperforms its homologues from the Na+‐excluding and stress‐sensitive glycophytes such as Arabidopsis in enhancing plant stress resistance and yield. Here, we found that expression of ZxNHX1 conferred superior growth under salt stress in alfalfa, compared to the Arabidopsis homologue AtNHX1. When expressed in yeast, ZxNHX1 displays stronger Na+/H+ but weaker K+/H+ exchange activity than AtNHX1. Under both K+ sufficient and deficient conditions, an Arabidopsis atnhx1‐1 mutant expressing ZxNHX1 accumulated higher Na+ and lower K+ concentrations, with more Na+ being sequestered into vacuoles and a larger proportion of K+ retained in the cytosol. This optimized cellular ion distribution ensures energy‐conserving osmotic adjustment, leading to stronger stress resistance and higher biomass than plants expressing AtNHX1. Moreover, ZxNHX1 governed the root uptake and root‐to‐leaf transport of Na+ at the whole‐plant level, whereas AtNHX1 acted mainly in K+ transport processes. We also identified a polar residue Thr265 in a membrane‐spanning region of ZxNHX1 that influences its Na+ and K+ selectivity. These findings reveal a new energy‐conserving, Na+‐based osmotic adjustment mechanism that can enhance crop stress resistance without sacrificing yield, providing an effective way for utilizing saline soils to expand crop production into marginal lands.
来自旱生植物的ZxNHX1比AtNHX1更能将Na+隔离到液泡中,从而提高植物的抗逆性和产量
揭示在恶劣环境下生长的旱生植物的抗逆性机制有助于作物的遗传改良。旱生植物叶黄素(Zygophyllum xanthoxylum)在液泡反转运蛋白ZxNHX1的介导下,在叶片中积累了大量Na+。ZxNHX1和液泡H+ - PPase基因ZxVP1‐1的共表达已被证明可以提高苜蓿的抗逆性和生物量。然而,目前尚不清楚ZxNHX1在提高植物抗逆性和产量方面是否优于来自Na+排斥和胁迫敏感型糖糖植物(如拟南芥)的同源物。本研究发现,与拟南芥同源基因AtNHX1相比,ZxNHX1的表达使紫花苜蓿在盐胁迫下的生长更加优越。在酵母中表达时,ZxNHX1表现出较强的Na+/H+交换活性,而较弱的K+/H+交换活性。在K+充足和缺乏的条件下,表达ZxNHX1的拟南芥atnhx1‐1突变体积累了更高的Na+和更低的K+浓度,更多的Na+被隔离在液泡中,更大比例的K+保留在细胞质中。这种优化的细胞离子分布确保了能量节约的渗透调节,导致比表达AtNHX1的植物更强的抗逆性和更高的生物量。此外,ZxNHX1在全株水平上控制着Na+的根吸收和根到叶的运输,而AtNHX1主要参与K+的运输过程。我们还在ZxNHX1的跨膜区发现了极性残基Thr265,影响其Na+和K+的选择性。这些发现揭示了一种新的节能、基于Na+的渗透调节机制,可以在不牺牲产量的情况下提高作物的抗逆性,为利用盐碱地扩大作物生产到边缘土地提供了有效途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Plant Biotechnology Journal
Plant Biotechnology Journal 生物-生物工程与应用微生物
CiteScore
20.50
自引率
2.90%
发文量
201
审稿时长
1 months
期刊介绍: Plant Biotechnology Journal aspires to publish original research and insightful reviews of high impact, authored by prominent researchers in applied plant science. The journal places a special emphasis on molecular plant sciences and their practical applications through plant biotechnology. Our goal is to establish a platform for showcasing significant advances in the field, encompassing curiosity-driven studies with potential applications, strategic research in plant biotechnology, scientific analysis of crucial issues for the beneficial utilization of plant sciences, and assessments of the performance of plant biotechnology products in practical applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信