Chuanwang Xing, Chengliang Mao, Shenghua Wang, Yuxuan Zhou, Lei Wu, Dake Zhang, Dingxuan Kang, Di Yang, Weiting Gong, Wendong Wei, Liang Wang, Chaoran Li, Geoffrey A. Ozin, Deren Yang, Wei Sun
{"title":"Ambient solar thermal catalysis for polyolefin upcycling using copper encapsulated in silicon nanosheets and chloroaluminate ionic liquid","authors":"Chuanwang Xing, Chengliang Mao, Shenghua Wang, Yuxuan Zhou, Lei Wu, Dake Zhang, Dingxuan Kang, Di Yang, Weiting Gong, Wendong Wei, Liang Wang, Chaoran Li, Geoffrey A. Ozin, Deren Yang, Wei Sun","doi":"10.1038/s41929-025-01349-y","DOIUrl":null,"url":null,"abstract":"<p>The accumulation of plastic waste has become a global issue. Socially and industrially viable, sustainable technical solutions are therefore required. Here we report a solar thermal catalytic system for polyolefins upcycling using copper nanoparticles encapsulated by stacked two-dimensional silicon. In a chloroaluminate ionic liquid solvent, unlike conventional thermal techniques, the upcycling can proceed under a mild temperature (55 °C) created photothermally under 4 sun irradiation. The polyethylene can be completely transformed into distinct and separable fractions of alkanes (C<sub>3</sub>–C<sub>7</sub>) and cyclic hydrocarbons (C<sub>8</sub>–C<sub>26</sub>) within hours, with a total yield of 91%. Mechanistic studies show a pathway involved two β-scissions of C–C bonds and a rapid cyclization. The approach offers versatility in the upcycling of various real-world polyolefin waste and features excellent feasibility in outdoor practices. The analyses of a conceptual upcycling facility using this technology showcase its appeal in both economic and eco-friendliness.</p><figure></figure>","PeriodicalId":18845,"journal":{"name":"Nature Catalysis","volume":"9 1","pages":""},"PeriodicalIF":42.8000,"publicationDate":"2025-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Catalysis","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1038/s41929-025-01349-y","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The accumulation of plastic waste has become a global issue. Socially and industrially viable, sustainable technical solutions are therefore required. Here we report a solar thermal catalytic system for polyolefins upcycling using copper nanoparticles encapsulated by stacked two-dimensional silicon. In a chloroaluminate ionic liquid solvent, unlike conventional thermal techniques, the upcycling can proceed under a mild temperature (55 °C) created photothermally under 4 sun irradiation. The polyethylene can be completely transformed into distinct and separable fractions of alkanes (C3–C7) and cyclic hydrocarbons (C8–C26) within hours, with a total yield of 91%. Mechanistic studies show a pathway involved two β-scissions of C–C bonds and a rapid cyclization. The approach offers versatility in the upcycling of various real-world polyolefin waste and features excellent feasibility in outdoor practices. The analyses of a conceptual upcycling facility using this technology showcase its appeal in both economic and eco-friendliness.
期刊介绍:
Nature Catalysis serves as a platform for researchers across chemistry and related fields, focusing on homogeneous catalysis, heterogeneous catalysis, and biocatalysts, encompassing both fundamental and applied studies. With a particular emphasis on advancing sustainable industries and processes, the journal provides comprehensive coverage of catalysis research, appealing to scientists, engineers, and researchers in academia and industry.
Maintaining the high standards of the Nature brand, Nature Catalysis boasts a dedicated team of professional editors, rigorous peer-review processes, and swift publication times, ensuring editorial independence and quality. The journal publishes work spanning heterogeneous catalysis, homogeneous catalysis, and biocatalysis, covering areas such as catalytic synthesis, mechanisms, characterization, computational studies, nanoparticle catalysis, electrocatalysis, photocatalysis, environmental catalysis, asymmetric catalysis, and various forms of organocatalysis.