Unveiling quantum phase transitions from traps in variational quantum algorithms

IF 6.6 1区 物理与天体物理 Q1 PHYSICS, APPLIED
Chenfeng Cao, Filippo Maria Gambetta, Ashley Montanaro, Raul A. Santos
{"title":"Unveiling quantum phase transitions from traps in variational quantum algorithms","authors":"Chenfeng Cao, Filippo Maria Gambetta, Ashley Montanaro, Raul A. Santos","doi":"10.1038/s41534-025-01038-5","DOIUrl":null,"url":null,"abstract":"<p>Understanding quantum phase transitions in physical systems is fundamental to characterize their behavior at low temperatures. Achieving this requires both accessing good approximations to the ground state and identifying order parameters to distinguish different phases. Addressing these challenges, our work introduces a hybrid algorithm that combines quantum optimization with classical machine learning. This approach leverages the capability of near-term quantum computers to prepare locally trapped states through finite optimization. Specifically, we apply LASSO for identifying conventional phase transitions and the Transformer model for topological transitions, utilizing these with a sliding window scan of Hamiltonian parameters to learn appropriate order parameters and locate critical points. We validated the method with numerical simulations and real-hardware experiments on Rigetti’s Ankaa 9Q-1 quantum computer. This protocol provides a framework for investigating quantum phase transitions with shallow circuits, offering enhanced efficiency and, in some settings, higher precision-thus contributing to the broader effort to integrate near-term quantum computing and machine learning.</p>","PeriodicalId":19212,"journal":{"name":"npj Quantum Information","volume":"36 1","pages":""},"PeriodicalIF":6.6000,"publicationDate":"2025-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Quantum Information","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1038/s41534-025-01038-5","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Understanding quantum phase transitions in physical systems is fundamental to characterize their behavior at low temperatures. Achieving this requires both accessing good approximations to the ground state and identifying order parameters to distinguish different phases. Addressing these challenges, our work introduces a hybrid algorithm that combines quantum optimization with classical machine learning. This approach leverages the capability of near-term quantum computers to prepare locally trapped states through finite optimization. Specifically, we apply LASSO for identifying conventional phase transitions and the Transformer model for topological transitions, utilizing these with a sliding window scan of Hamiltonian parameters to learn appropriate order parameters and locate critical points. We validated the method with numerical simulations and real-hardware experiments on Rigetti’s Ankaa 9Q-1 quantum computer. This protocol provides a framework for investigating quantum phase transitions with shallow circuits, offering enhanced efficiency and, in some settings, higher precision-thus contributing to the broader effort to integrate near-term quantum computing and machine learning.

Abstract Image

从变分量子算法的陷阱中揭示量子相变
理解物理系统中的量子相变是表征其低温行为的基础。要做到这一点,既需要获得基态的良好近似,又需要识别有序参数以区分不同的相位。为了解决这些挑战,我们的工作引入了一种将量子优化与经典机器学习相结合的混合算法。这种方法利用了近期量子计算机的能力,通过有限优化来制备局部捕获态。具体来说,我们应用LASSO来识别传统的相变,变压器模型来识别拓扑转变,利用这些与哈密顿参数的滑动窗口扫描来学习适当的阶参数并定位临界点。我们在Rigetti的Ankaa 9Q-1量子计算机上进行了数值模拟和实际硬件实验,验证了该方法。该协议为研究浅电路的量子相变提供了一个框架,提供了更高的效率,在某些情况下,还提供了更高的精度,从而为近期量子计算和机器学习的整合做出了更广泛的贡献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
npj Quantum Information
npj Quantum Information Computer Science-Computer Science (miscellaneous)
CiteScore
13.70
自引率
3.90%
发文量
130
审稿时长
29 weeks
期刊介绍: The scope of npj Quantum Information spans across all relevant disciplines, fields, approaches and levels and so considers outstanding work ranging from fundamental research to applications and technologies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信