Patient-specific prostate segmentation in kilovoltage images for radiation therapy intrafraction monitoring via deep learning.

IF 5.4 Q1 MEDICINE, RESEARCH & EXPERIMENTAL
Adam Mylonas, Zeyao Li, Marco Mueller, Jeremy T Booth, Ryan Brown, Mark Gardner, Andrew Kneebone, Thomas Eade, Paul J Keall, Doan Trang Nguyen
{"title":"Patient-specific prostate segmentation in kilovoltage images for radiation therapy intrafraction monitoring via deep learning.","authors":"Adam Mylonas, Zeyao Li, Marco Mueller, Jeremy T Booth, Ryan Brown, Mark Gardner, Andrew Kneebone, Thomas Eade, Paul J Keall, Doan Trang Nguyen","doi":"10.1038/s43856-025-00935-2","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>During radiation therapy, the natural movement of organs can lead to underdosing the cancer and overdosing the healthy tissue, compromising treatment efficacy. Real-time image-guided adaptive radiation therapy can track the tumour and account for the motion. Typically, fiducial markers are implanted as a surrogate for the tumour position due to the low radiographic contrast of soft tissues in kilovoltage (kV) images. A segmentation approach that does not require markers would eliminate the costs, delays, and risks associated with marker implantation.</p><p><strong>Methods: </strong>We trained patient-specific conditional Generative Adversarial Networks for prostate segmentation in kV images. The networks were trained using synthetic kV images generated from each patient's own imaging and planning data, which are available prior to the commencement of treatment. We validated the networks on two treatment fractions from 30 patients using multi-centre data from two clinical trials.</p><p><strong>Results: </strong>Here, we present a large-scale proof-of-principle study of x-ray-based markerless prostate segmentation for globally available cancer therapy systems. Our results demonstrate the feasibility of a deep learning approach using kV images to track prostate motion across the entire treatment arc for 30 patients with prostate cancer. The mean absolute deviation is 1.4 and 1.6 mm in the anterior-posterior/lateral and superior-inferior directions, respectively.</p><p><strong>Conclusions: </strong>Markerless segmentation via deep learning may enable real-time image guidance on conventional cancer therapy systems without requiring implanted markers or additional hardware, thereby expanding access to real-time adaptive radiation therapy.</p>","PeriodicalId":72646,"journal":{"name":"Communications medicine","volume":"5 1","pages":"212"},"PeriodicalIF":5.4000,"publicationDate":"2025-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12134301/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1038/s43856-025-00935-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Background: During radiation therapy, the natural movement of organs can lead to underdosing the cancer and overdosing the healthy tissue, compromising treatment efficacy. Real-time image-guided adaptive radiation therapy can track the tumour and account for the motion. Typically, fiducial markers are implanted as a surrogate for the tumour position due to the low radiographic contrast of soft tissues in kilovoltage (kV) images. A segmentation approach that does not require markers would eliminate the costs, delays, and risks associated with marker implantation.

Methods: We trained patient-specific conditional Generative Adversarial Networks for prostate segmentation in kV images. The networks were trained using synthetic kV images generated from each patient's own imaging and planning data, which are available prior to the commencement of treatment. We validated the networks on two treatment fractions from 30 patients using multi-centre data from two clinical trials.

Results: Here, we present a large-scale proof-of-principle study of x-ray-based markerless prostate segmentation for globally available cancer therapy systems. Our results demonstrate the feasibility of a deep learning approach using kV images to track prostate motion across the entire treatment arc for 30 patients with prostate cancer. The mean absolute deviation is 1.4 and 1.6 mm in the anterior-posterior/lateral and superior-inferior directions, respectively.

Conclusions: Markerless segmentation via deep learning may enable real-time image guidance on conventional cancer therapy systems without requiring implanted markers or additional hardware, thereby expanding access to real-time adaptive radiation therapy.

基于深度学习的千伏图像中患者特异性前列腺分割用于放射治疗内陷监测。
背景:在放射治疗过程中,器官的自然运动可能导致癌症剂量不足而健康组织剂量过大,从而影响治疗效果。实时图像引导的适应性放射治疗可以追踪肿瘤并解释其运动。通常,由于在千伏(kV)图像中软组织的放射成像对比度较低,因此植入基准标记物作为肿瘤位置的替代品。不需要标记的分割方法将消除与标记植入相关的成本、延迟和风险。方法:我们训练针对患者的条件生成对抗网络,用于kV图像的前列腺分割。这些网络使用从每个患者自己的成像和计划数据生成的合成kV图像进行训练,这些图像是在治疗开始之前可用的。我们使用来自两项临床试验的多中心数据验证了来自30名患者的两个治疗组的网络。结果:在这里,我们提出了一项大规模的基于x射线的无标记前列腺分割的原理验证研究,用于全球可用的癌症治疗系统。我们的研究结果表明,在30名前列腺癌患者的整个治疗过程中,使用kV图像跟踪前列腺运动的深度学习方法是可行的。在前后/外侧和上下方向的平均绝对偏差分别为1.4和1.6 mm。结论:通过深度学习的无标记分割可以实现传统癌症治疗系统的实时图像引导,而不需要植入标记物或额外的硬件,从而扩大实时适应性放射治疗的使用范围。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信