Zeji Du, Skylar A Rizzo, Tiffany L Sarrafian, Monique S Bagwell, Ryan C Mahlberg, Ashley Amontree, Paige Schiebel, Dinah M Tauferner, Zoe S LeBrasseur, Tyra A Witt, Mary Nagel, Kyla A Boyd, Humberto De Vitto, Matthew L Hillestad, Paul G Stalboerger, Matthew T Houdek, Rafael J Sierra, Atta Behfar
{"title":"Engineered BMP2/BMP7 extracellular vesicles induce autocrine BMP release driving SMAD phosphorylation to promote bone formation.","authors":"Zeji Du, Skylar A Rizzo, Tiffany L Sarrafian, Monique S Bagwell, Ryan C Mahlberg, Ashley Amontree, Paige Schiebel, Dinah M Tauferner, Zoe S LeBrasseur, Tyra A Witt, Mary Nagel, Kyla A Boyd, Humberto De Vitto, Matthew L Hillestad, Paul G Stalboerger, Matthew T Houdek, Rafael J Sierra, Atta Behfar","doi":"10.1038/s41536-025-00405-2","DOIUrl":null,"url":null,"abstract":"<p><p>In the United States, impaired bone healing impacts ~600,000 patients annually. Bone morphogenetic protein 2 (rhBMP2) therapy is impeded by low bone quality and adverse effects. Here, mesenchymal stem cells, engineered to produce BMP2 and BMP2/7 containing extracellular vesicles (BMP2-EV and BMP2/7-EV), provided an alternative means of stimulating bone formation. BMP2-EV and BMP2/7-EV drove increased calcium deposition and alkaline phosphatase activity; with increase in osterix, RUNX2, osteocalcin, and osteopontin documenting osteoblast differentiation. BMP2/7-EV induced SMAD phosphorylation and calcium deposition, was inhibited by DMH1, a BMP I receptor inhibitor, demonstrating BMP receptor dependence. BMP2 and BMP7 extracellular vesicle encapsulation was confirmed with preserved potency following treatment with BMP antagonist, Noggin. Application of BMP2/7-EV in a rat calvarial defect model demonstrated enhanced bone formation on micro-computed tomography and histopathologic analysis, equaling rhBMP2. BMP2/7-EV mediated bone formation here highlights EVs as a unique modality for delivery of tailored polyvalent regenerative biotherapies.</p>","PeriodicalId":54236,"journal":{"name":"npj Regenerative Medicine","volume":"10 1","pages":"26"},"PeriodicalIF":6.5000,"publicationDate":"2025-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12134205/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Regenerative Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41536-025-00405-2","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
In the United States, impaired bone healing impacts ~600,000 patients annually. Bone morphogenetic protein 2 (rhBMP2) therapy is impeded by low bone quality and adverse effects. Here, mesenchymal stem cells, engineered to produce BMP2 and BMP2/7 containing extracellular vesicles (BMP2-EV and BMP2/7-EV), provided an alternative means of stimulating bone formation. BMP2-EV and BMP2/7-EV drove increased calcium deposition and alkaline phosphatase activity; with increase in osterix, RUNX2, osteocalcin, and osteopontin documenting osteoblast differentiation. BMP2/7-EV induced SMAD phosphorylation and calcium deposition, was inhibited by DMH1, a BMP I receptor inhibitor, demonstrating BMP receptor dependence. BMP2 and BMP7 extracellular vesicle encapsulation was confirmed with preserved potency following treatment with BMP antagonist, Noggin. Application of BMP2/7-EV in a rat calvarial defect model demonstrated enhanced bone formation on micro-computed tomography and histopathologic analysis, equaling rhBMP2. BMP2/7-EV mediated bone formation here highlights EVs as a unique modality for delivery of tailored polyvalent regenerative biotherapies.
期刊介绍:
Regenerative Medicine, an innovative online-only journal, aims to advance research in the field of repairing and regenerating damaged tissues and organs within the human body. As a part of the prestigious Nature Partner Journals series and in partnership with ARMI, this high-quality, open access journal serves as a platform for scientists to explore effective therapies that harness the body's natural regenerative capabilities. With a focus on understanding the fundamental mechanisms of tissue damage and regeneration, npj Regenerative Medicine actively encourages studies that bridge the gap between basic research and clinical tissue repair strategies.