Hiroyuki J Kanaya, Ken Kuwajima, Yuko Ito, Yuta Shinohara, Yohei Okubo, Shinnosuke Shiono, Fumiya Tatsuki, Rei-Ichiro Ohno, Hideki Ukai, Maki Ukai-Tadenuma, Kenta Sumiyama, Hiroshi Fujishima, Rikuhiro G Yamada, Daisuke Tone, Hiroshi Kiyonari, Masaki Kikuchi, Takashi Umehara, Takashi Murayama, Kazunori Kanemaru, Masamitsu Iino, Koji L Ode, Takatsugu Hirokawa, Hiroki R Ueda
{"title":"Isoflurane activates the type 1 ryanodine receptor to induce anesthesia in mice.","authors":"Hiroyuki J Kanaya, Ken Kuwajima, Yuko Ito, Yuta Shinohara, Yohei Okubo, Shinnosuke Shiono, Fumiya Tatsuki, Rei-Ichiro Ohno, Hideki Ukai, Maki Ukai-Tadenuma, Kenta Sumiyama, Hiroshi Fujishima, Rikuhiro G Yamada, Daisuke Tone, Hiroshi Kiyonari, Masaki Kikuchi, Takashi Umehara, Takashi Murayama, Kazunori Kanemaru, Masamitsu Iino, Koji L Ode, Takatsugu Hirokawa, Hiroki R Ueda","doi":"10.1371/journal.pbio.3003172","DOIUrl":null,"url":null,"abstract":"<p><p>Inhaled anesthetics were first introduced into clinical use in the 1840s. Molecular and transgenic animal studies indicate that inhaled anesthetics act through several ion channels, including γ-aminobutyric acid type A receptors (GABAARs) and two-pore domain K+ (K2P) channels, but other targets may mediate anesthetic effects. Mutations in the type 1 ryanodine receptor (RyR1), which is a calcium release channel on the endoplasmic reticulum membrane, are relevant to malignant hyperthermia, a condition that can be induced by inhaled anesthetics. However, it was previously uncertain whether inhaled anesthetics directly interact with RyR1. In our study, we demonstrated that isoflurane and other inhaled anesthetics activate wild-type RyR1. By employing systematic mutagenesis, we discovered that altering just one amino acid residue negates the response to isoflurane, thus helping us to pinpoint the potential binding site. Knock-in mice engineered to express a mutant form of RyR1 that is insensitive to isoflurane exhibited resistance to the loss of righting reflex (LORR) when exposed to isoflurane anesthesia. This observation suggests a connection between RyR1 activation and the anesthetic effects in vivo. Moreover, it was shown that RyR1 is involved in the neuronal response to isoflurane. Additionally, administering new RyR1 agonists, which share the same binding site as isoflurane, resulted in a sedation-like state in mice. We propose that isoflurane directly activates RyR1, and this activation is pertinent to its anesthetic/sedative effects.</p>","PeriodicalId":49001,"journal":{"name":"PLoS Biology","volume":"23 6","pages":"e3003172"},"PeriodicalIF":9.8000,"publicationDate":"2025-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12132946/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1371/journal.pbio.3003172","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/6/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 0
Abstract
Inhaled anesthetics were first introduced into clinical use in the 1840s. Molecular and transgenic animal studies indicate that inhaled anesthetics act through several ion channels, including γ-aminobutyric acid type A receptors (GABAARs) and two-pore domain K+ (K2P) channels, but other targets may mediate anesthetic effects. Mutations in the type 1 ryanodine receptor (RyR1), which is a calcium release channel on the endoplasmic reticulum membrane, are relevant to malignant hyperthermia, a condition that can be induced by inhaled anesthetics. However, it was previously uncertain whether inhaled anesthetics directly interact with RyR1. In our study, we demonstrated that isoflurane and other inhaled anesthetics activate wild-type RyR1. By employing systematic mutagenesis, we discovered that altering just one amino acid residue negates the response to isoflurane, thus helping us to pinpoint the potential binding site. Knock-in mice engineered to express a mutant form of RyR1 that is insensitive to isoflurane exhibited resistance to the loss of righting reflex (LORR) when exposed to isoflurane anesthesia. This observation suggests a connection between RyR1 activation and the anesthetic effects in vivo. Moreover, it was shown that RyR1 is involved in the neuronal response to isoflurane. Additionally, administering new RyR1 agonists, which share the same binding site as isoflurane, resulted in a sedation-like state in mice. We propose that isoflurane directly activates RyR1, and this activation is pertinent to its anesthetic/sedative effects.
期刊介绍:
PLOS Biology is the flagship journal of the Public Library of Science (PLOS) and focuses on publishing groundbreaking and relevant research in all areas of biological science. The journal features works at various scales, ranging from molecules to ecosystems, and also encourages interdisciplinary studies. PLOS Biology publishes articles that demonstrate exceptional significance, originality, and relevance, with a high standard of scientific rigor in methodology, reporting, and conclusions.
The journal aims to advance science and serve the research community by transforming research communication to align with the research process. It offers evolving article types and policies that empower authors to share the complete story behind their scientific findings with a diverse global audience of researchers, educators, policymakers, patient advocacy groups, and the general public.
PLOS Biology, along with other PLOS journals, is widely indexed by major services such as Crossref, Dimensions, DOAJ, Google Scholar, PubMed, PubMed Central, Scopus, and Web of Science. Additionally, PLOS Biology is indexed by various other services including AGRICOLA, Biological Abstracts, BIOSYS Previews, CABI CAB Abstracts, CABI Global Health, CAPES, CAS, CNKI, Embase, Journal Guide, MEDLINE, and Zoological Record, ensuring that the research content is easily accessible and discoverable by a wide range of audiences.