{"title":"Exploration and heterologous expression of laccase genes and pesticide degradation ability of laccases from Cerrena unicolor GC.u01.","authors":"Jie Chu, Xiaoxiao Zhang, Ruihong Sun, Yuanqiang Lv, Zhuran Hu, Wenjuan Zhang, Xiaoran Shen, Yanhua Huang","doi":"10.1007/s11274-025-04435-2","DOIUrl":null,"url":null,"abstract":"<p><p>Laccases are valuable industrial enzymes with applications across various fields. While heterologous expression in Pichia pastoris is a common strategy, current approaches face limitations in yield, stability, and catalytic efficiency against recalcitrant agrochemicals. In this study, we sequenced and annotated the first high-quality genome of Cerrena unicolor strain GC.u01 (30.95 Mb, 8,089 genes), revealing a unique laccase gene family comprising nine members. Structural analysis revealed novel catalytic motifs in Lac2, which was successfully expressed in P. pastoris GS115 through codon optimization, yielding a novel recombinant enzyme (70 kDa) with exceptional pH stability (retaining > 80% activity at pH 3.0-8.0 for 24 h) and thermotolerance (> 60% activity at 40 °C), surpassing most reported fungal laccases. Notably, Lac2 demonstrated unprecedented degradation efficiency for azoxystrobin (96.2) and phoxim (30.7%)-the first report of a Cerrena unicolor laccase degrading these pesticides-achieving significantly higher rates than previously described laccases under similar conditions. This study integrates genome mining, enzyme engineering, and functional validation to establish a new paradigm for developing robust biocatalysts against recalcitrant agrochemicals. These unique characteristics of Lac2 suggest the potential of this enzyme in biotechnological and industrial applications.</p>","PeriodicalId":23703,"journal":{"name":"World journal of microbiology & biotechnology","volume":"41 6","pages":"188"},"PeriodicalIF":4.0000,"publicationDate":"2025-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"World journal of microbiology & biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11274-025-04435-2","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Laccases are valuable industrial enzymes with applications across various fields. While heterologous expression in Pichia pastoris is a common strategy, current approaches face limitations in yield, stability, and catalytic efficiency against recalcitrant agrochemicals. In this study, we sequenced and annotated the first high-quality genome of Cerrena unicolor strain GC.u01 (30.95 Mb, 8,089 genes), revealing a unique laccase gene family comprising nine members. Structural analysis revealed novel catalytic motifs in Lac2, which was successfully expressed in P. pastoris GS115 through codon optimization, yielding a novel recombinant enzyme (70 kDa) with exceptional pH stability (retaining > 80% activity at pH 3.0-8.0 for 24 h) and thermotolerance (> 60% activity at 40 °C), surpassing most reported fungal laccases. Notably, Lac2 demonstrated unprecedented degradation efficiency for azoxystrobin (96.2) and phoxim (30.7%)-the first report of a Cerrena unicolor laccase degrading these pesticides-achieving significantly higher rates than previously described laccases under similar conditions. This study integrates genome mining, enzyme engineering, and functional validation to establish a new paradigm for developing robust biocatalysts against recalcitrant agrochemicals. These unique characteristics of Lac2 suggest the potential of this enzyme in biotechnological and industrial applications.
期刊介绍:
World Journal of Microbiology and Biotechnology publishes research papers and review articles on all aspects of Microbiology and Microbial Biotechnology.
Since its foundation, the Journal has provided a forum for research work directed toward finding microbiological and biotechnological solutions to global problems. As many of these problems, including crop productivity, public health and waste management, have major impacts in the developing world, the Journal especially reports on advances for and from developing regions.
Some topics are not within the scope of the Journal. Please do not submit your manuscript if it falls into one of the following categories:
· Virology
· Simple isolation of microbes from local sources
· Simple descriptions of an environment or reports on a procedure
· Veterinary, agricultural and clinical topics in which the main focus is not on a microorganism
· Data reporting on host response to microbes
· Optimization of a procedure
· Description of the biological effects of not fully identified compounds or undefined extracts of natural origin
· Data on not fully purified enzymes or procedures in which they are applied
All articles published in the Journal are independently refereed.