Improving Human Respiratory Mucosa Tissue Models with Polyamide 6 Scaffolds.

IF 2.7 4区 医学 Q3 CELL & TISSUE ENGINEERING
Niklas Pallmann, Elena Lajtha, Heike Oberwinkler, Tobias Weigel, Armin von Fournier, Agmal Scherzad, Jean-Marie Heydel, Stephan Hackenberg, Jochen Bodem, Maria Steinke
{"title":"Improving Human Respiratory Mucosa Tissue Models with Polyamide 6 Scaffolds.","authors":"Niklas Pallmann, Elena Lajtha, Heike Oberwinkler, Tobias Weigel, Armin von Fournier, Agmal Scherzad, Jean-Marie Heydel, Stephan Hackenberg, Jochen Bodem, Maria Steinke","doi":"10.1089/ten.tec.2025.0087","DOIUrl":null,"url":null,"abstract":"<p><p>Advanced tissue-engineered respiratory models are essential for studying drug or cosmetic toxicity, infection biology and xenobiotic metabolism. Here, we investigated a polyamide 6 (PA6)-based electrospun stromal scaffold as a substitute for porcine-derived small intestinal submucosa (SIS) to build human airway mucosa tissue models at the air-liquid interface. We demonstrate that the porous PA6 scaffold supports extracellular matrix production by human nasal fibroblasts and facilitates the complete differentiation of respiratory epithelial cells to the mucociliary phenotype. These models reduce reliance on animal-derived materials, improve reproducibility, and minimize potential interference from animal-derived antigens and pathogens. Both PA6- and SIS-based models promote fibroblast migration, epithelial differentiation, and the expression of key xenobiotic metabolizing enzymes. They exhibit comparable epithelial barrier integrity and susceptibility to influenza A virus infections. These findings establish PA6 scaffolds as a suitable, animal-free alternative to the SIS to build human airway mucosa tissue models.</p>","PeriodicalId":23154,"journal":{"name":"Tissue engineering. Part C, Methods","volume":" ","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tissue engineering. Part C, Methods","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1089/ten.tec.2025.0087","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

Advanced tissue-engineered respiratory models are essential for studying drug or cosmetic toxicity, infection biology and xenobiotic metabolism. Here, we investigated a polyamide 6 (PA6)-based electrospun stromal scaffold as a substitute for porcine-derived small intestinal submucosa (SIS) to build human airway mucosa tissue models at the air-liquid interface. We demonstrate that the porous PA6 scaffold supports extracellular matrix production by human nasal fibroblasts and facilitates the complete differentiation of respiratory epithelial cells to the mucociliary phenotype. These models reduce reliance on animal-derived materials, improve reproducibility, and minimize potential interference from animal-derived antigens and pathogens. Both PA6- and SIS-based models promote fibroblast migration, epithelial differentiation, and the expression of key xenobiotic metabolizing enzymes. They exhibit comparable epithelial barrier integrity and susceptibility to influenza A virus infections. These findings establish PA6 scaffolds as a suitable, animal-free alternative to the SIS to build human airway mucosa tissue models.

聚酰胺6支架改善人呼吸道黏膜组织模型。
先进的组织工程呼吸模型是必不可少的研究药物或化妆品的毒性,感染生物学和异种代谢。本研究采用聚酰胺6 (PA6)基电纺丝基质支架作为猪源性小肠粘膜下层(SIS)的替代品,在气液界面处构建人气道黏膜组织模型。我们证明了多孔PA6支架支持人鼻成纤维细胞生成细胞外基质,并促进呼吸道上皮细胞向黏毛表型的完全分化。这些模型减少了对动物源性材料的依赖,提高了可重复性,并最大限度地减少了动物源性抗原和病原体的潜在干扰。基于PA6和sis的模型均可促进成纤维细胞迁移、上皮分化和关键外源代谢酶的表达。它们表现出相当的上皮屏障完整性和对甲型流感病毒感染的易感性。这些发现表明PA6支架是一种适合的、无动物的替代SIS构建人气道黏膜组织模型的材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Tissue engineering. Part C, Methods
Tissue engineering. Part C, Methods Medicine-Medicine (miscellaneous)
CiteScore
5.10
自引率
3.30%
发文量
136
期刊介绍: Tissue Engineering is the preeminent, biomedical journal advancing the field with cutting-edge research and applications that repair or regenerate portions or whole tissues. This multidisciplinary journal brings together the principles of engineering and life sciences in the creation of artificial tissues and regenerative medicine. Tissue Engineering is divided into three parts, providing a central forum for groundbreaking scientific research and developments of clinical applications from leading experts in the field that will enable the functional replacement of tissues. Tissue Engineering Methods (Part C) presents innovative tools and assays in scaffold development, stem cells and biologically active molecules to advance the field and to support clinical translation. Part C publishes monthly.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信