{"title":"Engineering organoids for dental pulp tissue regeneration and functional reconstruction.","authors":"Xian-Hua Gao, Xin-Lu Li, Bing Fan, Wei Fan","doi":"10.1080/17460751.2025.2514899","DOIUrl":null,"url":null,"abstract":"<p><p>Organoids, which replicate the three-dimensional architecture and physiological functions of native organs, have emerged as a groundbreaking tool with significant therapeutic potential for tissue regeneration and functional reconstruction. Despite their broad applications in various fields, research on dental pulp organoids and their use in regenerative therapies remains in its early stages, presenting both opportunities and challenges. To advance the understanding of organoid technology and facilitate its translation into pulp regenerative medicine, this review provided a comprehensive overview of organoids, encompassing their developmental history, self-organization mechanisms, fundamental definitions, and current applications. Building on this foundation, we highlighted recent progress in oral and maxillofacial organoid research, with a particular focus on the construction of dental pulp organoids. Additionally, we systematically summarized the commonly employed construction methods and explored innovative bioengineering strategies that hold promise for future applications. Finally, we critically evaluated the existing challenges in applying organoid technology to pulp tissue regeneration and functional reconstruction, while proposing potential solutions to overcome these barriers. This review aimed to provide valuable insights and inspire further research in this rapidly evolving field.</p>","PeriodicalId":21043,"journal":{"name":"Regenerative medicine","volume":" ","pages":"1-18"},"PeriodicalIF":2.4000,"publicationDate":"2025-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Regenerative medicine","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/17460751.2025.2514899","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
Organoids, which replicate the three-dimensional architecture and physiological functions of native organs, have emerged as a groundbreaking tool with significant therapeutic potential for tissue regeneration and functional reconstruction. Despite their broad applications in various fields, research on dental pulp organoids and their use in regenerative therapies remains in its early stages, presenting both opportunities and challenges. To advance the understanding of organoid technology and facilitate its translation into pulp regenerative medicine, this review provided a comprehensive overview of organoids, encompassing their developmental history, self-organization mechanisms, fundamental definitions, and current applications. Building on this foundation, we highlighted recent progress in oral and maxillofacial organoid research, with a particular focus on the construction of dental pulp organoids. Additionally, we systematically summarized the commonly employed construction methods and explored innovative bioengineering strategies that hold promise for future applications. Finally, we critically evaluated the existing challenges in applying organoid technology to pulp tissue regeneration and functional reconstruction, while proposing potential solutions to overcome these barriers. This review aimed to provide valuable insights and inspire further research in this rapidly evolving field.
期刊介绍:
Regenerative medicine replaces or regenerates human cells, tissue or organs, to restore or establish normal function*. Since 2006, Regenerative Medicine has been at the forefront of publishing the very best papers and reviews covering the entire regenerative medicine sector. The journal focusses on the entire spectrum of approaches to regenerative medicine, including small molecule drugs, biologics, biomaterials and tissue engineering, and cell and gene therapies – it’s all about regeneration and not a specific platform technology. The journal’s scope encompasses all aspects of the sector ranging from discovery research, through to clinical development, through to commercialization. Regenerative Medicine uniquely supports this important area of biomedical science and healthcare by providing a peer-reviewed journal totally committed to publishing the very best regenerative medicine research, clinical translation and commercialization.
Regenerative Medicine provides a specialist forum to address the important challenges and advances in regenerative medicine, delivering this essential information in concise, clear and attractive article formats – vital to a rapidly growing, multidisciplinary and increasingly time-constrained community.
Despite substantial developments in our knowledge and understanding of regeneration, the field is still in its infancy. However, progress is accelerating. The next few decades will see the discovery and development of transformative therapies for patients, and in some cases, even cures. Regenerative Medicine will continue to provide a critical overview of these advances as they progress, undergo clinical trials, and eventually become mainstream medicine.