{"title":"Neuroprotective Effect of PBCA Nanoparticles Delivering pEGFP-BDNF in a Mouse Model of Intracerebral Hemorrhage.","authors":"Xue Lai, Yu Xiong, Xing Guo, Chunbo Chen","doi":"10.31083/JIN26971","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>Polybutylcyanoacrylate (PBCA) nanoparticles (NPs) were prepared by emulsion polymerization and loaded with an enhanced green fluorescent protein plasmid (pEGFP) encoding human brain-derived neurotrophic factor (BDNF). This study investigated the potential effects of PBCA-pEGFP-BDNF NPs for the treatment of experimental cerebral hemorrhage mouse model animals.</p><p><strong>Methods: </strong>Eight-week-old male mice (30 ± 5 g) were randomly divided into four groups (sham, intracerebral hemorrhage (ICH), ICH+PBCA NPs, and ICH+ PBCA-pEGFP-BDNF NPs; n = 14). An ICH model was constructed by right striatum injection of bacterial collagenase VII. Neurological function was evaluated by modified Garcia score after treatment of ICH mice with PBCA-pEGFP-BDNF NPs. The area of cerebral hematoma was measured and the water content of brain tissues was calculated by the wet/dry ratio method. Finally, immunofluorescence staining was used to detect neuron-specific nuclear protein (NeuN) positive cells around hematomas. Enzyme-linked immunosorbent assay (ELISA), real-time quantitative polymerase chain reaction (qPCR), and western blot were used to detect inflammatory BDNF, nuclear factor kappa-B (NF-κB), interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-α), and either interleukin-1 beta (IL-1β) mRNA or protein levels.</p><p><strong>Results: </strong>Treatment with PBCA-pEGFP-BDNF NPs significantly improved neurological function and reduced acute brain edema and neuroinflammation in the mouse model of ICH. qPCR, ELISA, and western blot results showed that PBCA-pEGFP-BDNF NPs increased BDNF expression, inhibited NF-κB signaling pathway activity, and decreased the levels of inflammatory factors (IL-6, TNF-α, IL-1β) when compared with the recombinant plasmid pEGFP-BDNF.</p><p><strong>Conclusion: </strong>PBCA-pEGFP-BDNF NPs improves neurological function in experimental ICH mice at least in part related to increased BDNF expression and decreased p65 NF-κB signaling axis activation, suggesting that PBCA NPs might be a suitable pEGFP-BDNF-carrying delivery system for ICH treatment.</p>","PeriodicalId":16160,"journal":{"name":"Journal of integrative neuroscience","volume":"24 5","pages":"26971"},"PeriodicalIF":2.5000,"publicationDate":"2025-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of integrative neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.31083/JIN26971","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Objectives: Polybutylcyanoacrylate (PBCA) nanoparticles (NPs) were prepared by emulsion polymerization and loaded with an enhanced green fluorescent protein plasmid (pEGFP) encoding human brain-derived neurotrophic factor (BDNF). This study investigated the potential effects of PBCA-pEGFP-BDNF NPs for the treatment of experimental cerebral hemorrhage mouse model animals.
Methods: Eight-week-old male mice (30 ± 5 g) were randomly divided into four groups (sham, intracerebral hemorrhage (ICH), ICH+PBCA NPs, and ICH+ PBCA-pEGFP-BDNF NPs; n = 14). An ICH model was constructed by right striatum injection of bacterial collagenase VII. Neurological function was evaluated by modified Garcia score after treatment of ICH mice with PBCA-pEGFP-BDNF NPs. The area of cerebral hematoma was measured and the water content of brain tissues was calculated by the wet/dry ratio method. Finally, immunofluorescence staining was used to detect neuron-specific nuclear protein (NeuN) positive cells around hematomas. Enzyme-linked immunosorbent assay (ELISA), real-time quantitative polymerase chain reaction (qPCR), and western blot were used to detect inflammatory BDNF, nuclear factor kappa-B (NF-κB), interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-α), and either interleukin-1 beta (IL-1β) mRNA or protein levels.
Results: Treatment with PBCA-pEGFP-BDNF NPs significantly improved neurological function and reduced acute brain edema and neuroinflammation in the mouse model of ICH. qPCR, ELISA, and western blot results showed that PBCA-pEGFP-BDNF NPs increased BDNF expression, inhibited NF-κB signaling pathway activity, and decreased the levels of inflammatory factors (IL-6, TNF-α, IL-1β) when compared with the recombinant plasmid pEGFP-BDNF.
Conclusion: PBCA-pEGFP-BDNF NPs improves neurological function in experimental ICH mice at least in part related to increased BDNF expression and decreased p65 NF-κB signaling axis activation, suggesting that PBCA NPs might be a suitable pEGFP-BDNF-carrying delivery system for ICH treatment.
期刊介绍:
JIN is an international peer-reviewed, open access journal. JIN publishes leading-edge research at the interface of theoretical and experimental neuroscience, focusing across hierarchical levels of brain organization to better understand how diverse functions are integrated. We encourage submissions from scientists of all specialties that relate to brain functioning.