Zhuxiao Xie, Lei Liu, Yanjun Guo, Hanqiu Jiang, Lin Li, Zhixin Qiao, Jiawei Wang
{"title":"Exosomal miR-432-5p, miR-4433b-5p, and miR-599: Biomarkers for Monitoring the Severity of Anti-N-methyl-D-aspartate Receptor Encephalitis.","authors":"Zhuxiao Xie, Lei Liu, Yanjun Guo, Hanqiu Jiang, Lin Li, Zhixin Qiao, Jiawei Wang","doi":"10.31083/JIN37513","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Anti-N-methyl-D-aspartate receptor (NMDAR) encephalitis is a rare disease with a high disability rate, characterized by acute-to-subacute psychiatric and/or neurological symptoms. Continuous intrathecal antibody synthesis does not correlate with the active phase of encephalitis and antibody titers do not directly reflect the severity of the condition. Currently, there is a lack of biomarkers for disease monitoring. This study focuses on finding novel peripheral blood biomarkers that can accurately monitor the severity of anti-NMDAR encephalitis.</p><p><strong>Methods: </strong>Peripheral blood samples were collected from patients with anti-NMDAR encephalitis, including those with acute-phase (autoimmune encephalitis (AE)-a group) and stable-phase (AE-s group) autoimmune encephalitis. Healthy individuals were included as controls (HC group). We isolated exosomal microRNAs (miRNAs) from the samples and screened differentially expressed miRNAs through next-generation sequencing. The sequencing results were validated using quantitative real-time qPCR (RT-qPCR). Furthermore, we conducted a correlation analysis between the expression levels of the screened miRNAs and clinical severity. Finally, we performed functional pathway analysis to explore the underlying mechanisms in anti-NMDAR encephalitis.</p><p><strong>Results: </strong>We found that exosomal miR-432-5p, miR-4433b-5p, and miR-599 exhibited significant differences between patients with anti-NMDAR encephalitis and healthy controls, as well as at various phases of the disease. The expression of miR-432-5p and miR-4433b-5p were negatively correlated with clinical severity. We further identified that key pathways including rhythmic processes and glutamatergic signaling play significant roles in the pathogenesis of anti-NMDAR encephalitis.</p><p><strong>Conclusions: </strong>Our research indicated that exosomal miR-432-5p, miR-4433b-5p, and miR-599 were correlated with the severity of anti-NMDAR encephalitis and can serve as potential biomarkers for disease monitoring. Moreover, the key functional pathways predicted by these miRNAs may play crucial roles in disease progression.</p>","PeriodicalId":16160,"journal":{"name":"Journal of integrative neuroscience","volume":"24 5","pages":"37513"},"PeriodicalIF":2.5000,"publicationDate":"2025-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of integrative neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.31083/JIN37513","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Anti-N-methyl-D-aspartate receptor (NMDAR) encephalitis is a rare disease with a high disability rate, characterized by acute-to-subacute psychiatric and/or neurological symptoms. Continuous intrathecal antibody synthesis does not correlate with the active phase of encephalitis and antibody titers do not directly reflect the severity of the condition. Currently, there is a lack of biomarkers for disease monitoring. This study focuses on finding novel peripheral blood biomarkers that can accurately monitor the severity of anti-NMDAR encephalitis.
Methods: Peripheral blood samples were collected from patients with anti-NMDAR encephalitis, including those with acute-phase (autoimmune encephalitis (AE)-a group) and stable-phase (AE-s group) autoimmune encephalitis. Healthy individuals were included as controls (HC group). We isolated exosomal microRNAs (miRNAs) from the samples and screened differentially expressed miRNAs through next-generation sequencing. The sequencing results were validated using quantitative real-time qPCR (RT-qPCR). Furthermore, we conducted a correlation analysis between the expression levels of the screened miRNAs and clinical severity. Finally, we performed functional pathway analysis to explore the underlying mechanisms in anti-NMDAR encephalitis.
Results: We found that exosomal miR-432-5p, miR-4433b-5p, and miR-599 exhibited significant differences between patients with anti-NMDAR encephalitis and healthy controls, as well as at various phases of the disease. The expression of miR-432-5p and miR-4433b-5p were negatively correlated with clinical severity. We further identified that key pathways including rhythmic processes and glutamatergic signaling play significant roles in the pathogenesis of anti-NMDAR encephalitis.
Conclusions: Our research indicated that exosomal miR-432-5p, miR-4433b-5p, and miR-599 were correlated with the severity of anti-NMDAR encephalitis and can serve as potential biomarkers for disease monitoring. Moreover, the key functional pathways predicted by these miRNAs may play crucial roles in disease progression.
期刊介绍:
JIN is an international peer-reviewed, open access journal. JIN publishes leading-edge research at the interface of theoretical and experimental neuroscience, focusing across hierarchical levels of brain organization to better understand how diverse functions are integrated. We encourage submissions from scientists of all specialties that relate to brain functioning.