Rocío Belén Fernández Farnocchia, Roberto Luis Benech-Arnold, Diego Batlla
{"title":"Maternal temperature effects on seed dormancy mitigate the negative impact of global warming on germination and population fitness.","authors":"Rocío Belén Fernández Farnocchia, Roberto Luis Benech-Arnold, Diego Batlla","doi":"10.1093/jxb/eraf243","DOIUrl":null,"url":null,"abstract":"<p><p>A negative relationship is typically observed between maternal temperature and seed dormancy at dispersal. This could affect germination timing in current and future environments given the context of global warming. We conducted field and laboratory experiments to investigate the effects of maternal temperature on the dormancy level of Polygonum aviculare seeds. Data were used to simulate the germination timing and subsequent population reproductive performance under different thermal scenarios. Increasing maternal temperature reduced the dormancy level of seeds, altered the induction of secondary dormancy, and generally increased seedling emergence in the field. Simulations for current thermal scenarios demonstrated that the effect of maternal temperature on seed dormancy could lead to changes in germination timing from year to year. For future warming scenarios, our simulations indicated that rising maternal temperatures, along with those experienced by the seed bank, could decrease the proportion of seeds capable of germinating and delay germination timing, resulting in cascading negative effects on population reproductive fitness. However, changes in the germination timing and the reproductive fitness were more pronounced when the simulations excluded the effects of the maternal temperature on dormancy level, suggesting that this modulation could play a significant role in mitigating the consequences of global warming.</p>","PeriodicalId":15820,"journal":{"name":"Journal of Experimental Botany","volume":" ","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2025-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Experimental Botany","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/jxb/eraf243","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
A negative relationship is typically observed between maternal temperature and seed dormancy at dispersal. This could affect germination timing in current and future environments given the context of global warming. We conducted field and laboratory experiments to investigate the effects of maternal temperature on the dormancy level of Polygonum aviculare seeds. Data were used to simulate the germination timing and subsequent population reproductive performance under different thermal scenarios. Increasing maternal temperature reduced the dormancy level of seeds, altered the induction of secondary dormancy, and generally increased seedling emergence in the field. Simulations for current thermal scenarios demonstrated that the effect of maternal temperature on seed dormancy could lead to changes in germination timing from year to year. For future warming scenarios, our simulations indicated that rising maternal temperatures, along with those experienced by the seed bank, could decrease the proportion of seeds capable of germinating and delay germination timing, resulting in cascading negative effects on population reproductive fitness. However, changes in the germination timing and the reproductive fitness were more pronounced when the simulations excluded the effects of the maternal temperature on dormancy level, suggesting that this modulation could play a significant role in mitigating the consequences of global warming.
期刊介绍:
The Journal of Experimental Botany publishes high-quality primary research and review papers in the plant sciences. These papers cover a range of disciplines from molecular and cellular physiology and biochemistry through whole plant physiology to community physiology.
Full-length primary papers should contribute to our understanding of how plants develop and function, and should provide new insights into biological processes. The journal will not publish purely descriptive papers or papers that report a well-known process in a species in which the process has not been identified previously. Articles should be concise and generally limited to 10 printed pages.