Giulia Lunghi, Carola Pedroli, Ilaria Tagliabue, Dorina Dobi, Maria Grazia Ciampa, Laura Mauri, Laura Rouvière, Alexandre Henriques, Noelle Callizot, Sandro Sonnino, Elena Chiricozzi, Maria Fazzari
{"title":"GM1 oligosaccharide-mediated rescue in GBA-linked Parkinson's disease via modulation of lysosomal and mitochondrial dysfunctions.","authors":"Giulia Lunghi, Carola Pedroli, Ilaria Tagliabue, Dorina Dobi, Maria Grazia Ciampa, Laura Mauri, Laura Rouvière, Alexandre Henriques, Noelle Callizot, Sandro Sonnino, Elena Chiricozzi, Maria Fazzari","doi":"10.1007/s10719-025-10185-y","DOIUrl":null,"url":null,"abstract":"<p><p>Mutations in the glucocerebrosidase GBA gene, encoding the lysosomal enzyme β-glucocerebrosidase, represent the most frequent genetic risk factor for Parkinson's disease, leading to lysosomal dysfunction, α-synuclein aggregation, and mitochondrial impairment. In this study, we investigated the therapeutic potential of GM1 ganglioside and its oligosaccharide portion (OligoGM1) in a cellular model of GBA-associated Parkinson's disease, using SH-SY5Y neuroblastoma cells carrying the L444P GBA mutation. We observed that both GM1 and OligoGM1 reduced α-synuclein accumulation and improved cell viability. Notably, only OligoGM1 attenuated lysosomal overload and restored mitophagy. Additionally, OligoGM1 significantly prevented 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced toxicity, including lysosomal dysfunction, reactive oxidative species-overproduction, and mitochondrial energy failure, whereas GM1 failed to provide protection. These findings highlight the selective and multifaceted neuroprotective actions of OligoGM1 under both genetic conditions and environmental stress. Due to its small, hydrophilic nature and capacity to cross the blood-brain barrier, OligoGM1 emerges as a promising therapeutic candidate for GBA-related and potentially idiopathic forms of Parkinson's Disease.</p>","PeriodicalId":12762,"journal":{"name":"Glycoconjugate Journal","volume":" ","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Glycoconjugate Journal","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10719-025-10185-y","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Mutations in the glucocerebrosidase GBA gene, encoding the lysosomal enzyme β-glucocerebrosidase, represent the most frequent genetic risk factor for Parkinson's disease, leading to lysosomal dysfunction, α-synuclein aggregation, and mitochondrial impairment. In this study, we investigated the therapeutic potential of GM1 ganglioside and its oligosaccharide portion (OligoGM1) in a cellular model of GBA-associated Parkinson's disease, using SH-SY5Y neuroblastoma cells carrying the L444P GBA mutation. We observed that both GM1 and OligoGM1 reduced α-synuclein accumulation and improved cell viability. Notably, only OligoGM1 attenuated lysosomal overload and restored mitophagy. Additionally, OligoGM1 significantly prevented 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced toxicity, including lysosomal dysfunction, reactive oxidative species-overproduction, and mitochondrial energy failure, whereas GM1 failed to provide protection. These findings highlight the selective and multifaceted neuroprotective actions of OligoGM1 under both genetic conditions and environmental stress. Due to its small, hydrophilic nature and capacity to cross the blood-brain barrier, OligoGM1 emerges as a promising therapeutic candidate for GBA-related and potentially idiopathic forms of Parkinson's Disease.
期刊介绍:
Glycoconjugate Journal publishes articles and reviews on all areas concerned with:
function, composition, structure, biosynthesis, degradation, interactions, recognition and chemo-enzymatic synthesis of glycoconjugates (glycoproteins, glycolipids, oligosaccharides, polysaccharides and proteoglycans), biochemistry, molecular biology, biotechnology, immunology and cell biology of glycoconjugates, aspects related to disease processes (immunological, inflammatory, arthritic infections, metabolic disorders, malignancy, neurological disorders), structural and functional glycomics, glycoimmunology, glycovaccines, organic synthesis of glycoconjugates and the development of methodologies if biologically relevant, glycosylation changes in disease if focused on either the discovery of a novel disease marker or the improved understanding of some basic pathological mechanism, articles on the effects of toxicological agents (alcohol, tobacco, narcotics, environmental agents) on glycosylation, and the use of glycotherapeutics.
Glycoconjugate Journal is the official journal of the International Glycoconjugate Organization, which is responsible for organizing the biennial International Symposia on Glycoconjugates.