Aysha Naseer, Naif Almudawi, Hanan Aljuaid, Abdulwahab Alazeb, Yahay AlQahtani, Asaad Algarni, Ahmad Jalal, Hui Liu
{"title":"Multi-modal remote sensory learning for multi-objects over autonomous devices.","authors":"Aysha Naseer, Naif Almudawi, Hanan Aljuaid, Abdulwahab Alazeb, Yahay AlQahtani, Asaad Algarni, Ahmad Jalal, Hui Liu","doi":"10.3389/fbioe.2025.1430222","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>There has been an increasing focus on object segmentation within remote sensing images in recent years due to advancements in remote sensing technology and the growing significance of these images in both military and civilian realms. In these situations, it is critical to accurately and quickly identify a wide variety of objects. In many computer vision applications, scene recognition in aerial-based remote sensing imagery presents a common issue.</p><p><strong>Method: </strong>However, several challenging elements make this work especially difficult: (i) Different objects have different pixel densities; (ii) objects are not evenly distributed in remote sensing images; (iii) objects can appear differently depending on viewing angle and lighting conditions; and (iv) there are fluctuations in the number of objects, even the same type, in remote sensing images. Using a synergistic combination of Markov Random Field (MRF) for accurate labeling and Alex Net model for robust scene recognition, this work presents a novel method for the identification of remote sensing objects. During the labeling step, the use of MRF guarantees precise spatial contextual modeling, which improves comprehension of intricate interactions between nearby aerial objects. By simultaneously using deep learning model, the incorporation of Alex Net in the following classification phase enhances the model's capacity to identify complex patterns in aerial images and adapt to a variety of object attributes.</p><p><strong>Results: </strong>Experiments show that our method performs better than others in terms of classification accuracy and generalization, indicating its efficacy analysis on benchmark datasets such as UC Merced Land Use and AID.</p><p><strong>Discussion: </strong>Several performance measures were calculated to assess the efficacy of the suggested technique, including accuracy, precision, recall, error, and F1-Score. The assessment findings show a remarkable recognition rate of around 97.90% and 98.90%, on the AID and the UC Merced Land datasets, respectively.</p>","PeriodicalId":12444,"journal":{"name":"Frontiers in Bioengineering and Biotechnology","volume":"13 ","pages":"1430222"},"PeriodicalIF":4.8000,"publicationDate":"2025-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12130010/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Bioengineering and Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3389/fbioe.2025.1430222","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction: There has been an increasing focus on object segmentation within remote sensing images in recent years due to advancements in remote sensing technology and the growing significance of these images in both military and civilian realms. In these situations, it is critical to accurately and quickly identify a wide variety of objects. In many computer vision applications, scene recognition in aerial-based remote sensing imagery presents a common issue.
Method: However, several challenging elements make this work especially difficult: (i) Different objects have different pixel densities; (ii) objects are not evenly distributed in remote sensing images; (iii) objects can appear differently depending on viewing angle and lighting conditions; and (iv) there are fluctuations in the number of objects, even the same type, in remote sensing images. Using a synergistic combination of Markov Random Field (MRF) for accurate labeling and Alex Net model for robust scene recognition, this work presents a novel method for the identification of remote sensing objects. During the labeling step, the use of MRF guarantees precise spatial contextual modeling, which improves comprehension of intricate interactions between nearby aerial objects. By simultaneously using deep learning model, the incorporation of Alex Net in the following classification phase enhances the model's capacity to identify complex patterns in aerial images and adapt to a variety of object attributes.
Results: Experiments show that our method performs better than others in terms of classification accuracy and generalization, indicating its efficacy analysis on benchmark datasets such as UC Merced Land Use and AID.
Discussion: Several performance measures were calculated to assess the efficacy of the suggested technique, including accuracy, precision, recall, error, and F1-Score. The assessment findings show a remarkable recognition rate of around 97.90% and 98.90%, on the AID and the UC Merced Land datasets, respectively.
期刊介绍:
The translation of new discoveries in medicine to clinical routine has never been easy. During the second half of the last century, thanks to the progress in chemistry, biochemistry and pharmacology, we have seen the development and the application of a large number of drugs and devices aimed at the treatment of symptoms, blocking unwanted pathways and, in the case of infectious diseases, fighting the micro-organisms responsible. However, we are facing, today, a dramatic change in the therapeutic approach to pathologies and diseases. Indeed, the challenge of the present and the next decade is to fully restore the physiological status of the diseased organism and to completely regenerate tissue and organs when they are so seriously affected that treatments cannot be limited to the repression of symptoms or to the repair of damage. This is being made possible thanks to the major developments made in basic cell and molecular biology, including stem cell science, growth factor delivery, gene isolation and transfection, the advances in bioengineering and nanotechnology, including development of new biomaterials, biofabrication technologies and use of bioreactors, and the big improvements in diagnostic tools and imaging of cells, tissues and organs.
In today`s world, an enhancement of communication between multidisciplinary experts, together with the promotion of joint projects and close collaborations among scientists, engineers, industry people, regulatory agencies and physicians are absolute requirements for the success of any attempt to develop and clinically apply a new biological therapy or an innovative device involving the collective use of biomaterials, cells and/or bioactive molecules. “Frontiers in Bioengineering and Biotechnology” aspires to be a forum for all people involved in the process by bridging the gap too often existing between a discovery in the basic sciences and its clinical application.