Metal-Organic Frameworks for Wastewater Remediation: Sustainable Synthesis, Properties, and Applications.

IF 7 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Palanisamy Vasudhevan, Velu Manikandan, Nadeem Iqbal, Sami Ullah, Hui Ma, Subhav Singh, Deekshant Varshney, Shengyan Pu
{"title":"Metal-Organic Frameworks for Wastewater Remediation: Sustainable Synthesis, Properties, and Applications.","authors":"Palanisamy Vasudhevan, Velu Manikandan, Nadeem Iqbal, Sami Ullah, Hui Ma, Subhav Singh, Deekshant Varshney, Shengyan Pu","doi":"10.1002/tcr.202500076","DOIUrl":null,"url":null,"abstract":"<p><p>The rapid growth of industrial development and intensified agriculture has resulted in the accumulation of a wide range of hazardous pollutants in water systems. Several conventional wastewater treatment methods, including flocculation and coagulation, photocatalysis, membrane systems, and adsorption, have been shown to be efficient and limited in their ability to remediate harmful contaminants. However, the rate of achievement observed with all of these methods is frequently connected with the effectiveness and sustainability of the wastewater treatment materials utilized. Metal-organic frameworks (MOFs) have emerged as a promising solution, offering diverse morphological and chemical properties, such as high surface areas, pore volumes, and tailored regions. This present review focuses on the structural characteristics of MOFs, including surface area, porosity, thermal stability, and adaptability. Sustainable synthesis methods and the applications of MOFs in wastewater treatment through adsorption and photocatalysis of pollutants like dyes, heavy metals, and organic contaminants are discussed. Finally, the existing challenges and limitations of MOF-based wastewater treatment are addressed, and future research prospects are outlined. The unique properties of MOFs make them promising materials for extensive applications, with significant potential for industrial prospects.</p>","PeriodicalId":10046,"journal":{"name":"Chemical record","volume":" ","pages":"e2500076"},"PeriodicalIF":7.0000,"publicationDate":"2025-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical record","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/tcr.202500076","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The rapid growth of industrial development and intensified agriculture has resulted in the accumulation of a wide range of hazardous pollutants in water systems. Several conventional wastewater treatment methods, including flocculation and coagulation, photocatalysis, membrane systems, and adsorption, have been shown to be efficient and limited in their ability to remediate harmful contaminants. However, the rate of achievement observed with all of these methods is frequently connected with the effectiveness and sustainability of the wastewater treatment materials utilized. Metal-organic frameworks (MOFs) have emerged as a promising solution, offering diverse morphological and chemical properties, such as high surface areas, pore volumes, and tailored regions. This present review focuses on the structural characteristics of MOFs, including surface area, porosity, thermal stability, and adaptability. Sustainable synthesis methods and the applications of MOFs in wastewater treatment through adsorption and photocatalysis of pollutants like dyes, heavy metals, and organic contaminants are discussed. Finally, the existing challenges and limitations of MOF-based wastewater treatment are addressed, and future research prospects are outlined. The unique properties of MOFs make them promising materials for extensive applications, with significant potential for industrial prospects.

用于废水修复的金属-有机框架:可持续合成、性能和应用。
工业发展和集约化农业的快速增长导致了水系统中各种有害污染物的积累。一些传统的废水处理方法,包括絮凝和混凝、光催化、膜系统和吸附,已经被证明是有效的,并且在它们修复有害污染物的能力方面是有限的。然而,所有这些方法所观察到的效率往往与所使用的废水处理材料的有效性和可持续性有关。金属有机框架(mof)已成为一种很有前途的解决方案,具有多种形态和化学特性,如高表面积、孔隙体积和定制区域。本文综述了MOFs的结构特征,包括比表面积、孔隙度、热稳定性和适应性。讨论了mof的可持续合成方法及其在染料、重金属、有机污染物的吸附和光催化处理废水中的应用。最后,分析了mof废水处理存在的挑战和局限性,并对未来的研究前景进行了展望。mof材料的独特性能使其具有广泛的应用前景,具有巨大的工业应用潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chemical record
Chemical record 化学-化学综合
CiteScore
11.00
自引率
3.00%
发文量
188
审稿时长
>12 weeks
期刊介绍: The Chemical Record (TCR) is a "highlights" journal publishing timely and critical overviews of new developments at the cutting edge of chemistry of interest to a wide audience of chemists (2013 journal impact factor: 5.577). The scope of published reviews includes all areas related to physical chemistry, analytical chemistry, inorganic chemistry, organic chemistry, polymer chemistry, materials chemistry, bioorganic chemistry, biochemistry, biotechnology and medicinal chemistry as well as interdisciplinary fields. TCR provides carefully selected highlight papers by leading researchers that introduce the author''s own experimental and theoretical results in a framework designed to establish perspectives with earlier and contemporary work and provide a critical review of the present state of the subject. The articles are intended to present concise evaluations of current trends in chemistry research to help chemists gain useful insights into fields outside their specialization and provide experts with summaries of recent key developments.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信