{"title":"Effects of chemical and physical deimmunogenicity methods on the biological and biomechanical properties of allogeneic tendons.","authors":"Xiong-Gang Yang, Hui Zhong, Gui-Qian Zhang, Jing-Cheng Zhou, Yong-Cheng Hu, Sheng Lu","doi":"10.1007/s10561-025-10177-0","DOIUrl":null,"url":null,"abstract":"<p><p>To compare the differences in biological and biomechanical characteristics of cadaver tendon treated by deep freezing, 95wt.% ethanol, tributyl phosphate (TBP), and sodium dodecyl sulfate (SDS) respectively. A total of 50 fresh tendon specimens were randomly divided into five groups, and four groups were treated with deep freezing (- 80 °C), 95wt.% ethanol, 1% TBP, or 1% SDS, respectively. Hematoxylin-eosin (HE), toluidine blue (TB) and 4',6-diamidino-2-phenylindole (DAPI) staining, and transmission/scanning electron microscope observations were performed. Then, cyclic creep and tensile tests were conducted to investigate the biomechanical properties. The content of residual DNA was tested. The HE, TB and DAPI staining showed a significant decrease in tendon cells following treatments, compared with fresh specimens. SDS, TBP, alcohol can almost completely decellularize the tendon, and deep-frozen group remained a few number of tendon cells. The residual DNA content was significantly lowered, with an average percentage of 50.97%, 79.16%, 88.91% and 72.56%, for groups of deep freezing, alcohol, TBP and SDS, respectively. The arrangement of collagen fibers was significantly disrupted, and the gap between fibers was widened, following treatments by alcohol, TBP and SDS. However, the biomechanical properties were generally similar among the five groups, with significantly lowered cyclic creep for ethanol group and lowered Young's modulus for SDS group exclusively. The four treatments can effectively reduce the number of residual cells and DNA content. Among them, cryogenic treatment has almost no damage to tendon histology and biomechanics, while ethanol, SDS and TBP decellularization methods cause different degrees of damage.</p>","PeriodicalId":9723,"journal":{"name":"Cell and Tissue Banking","volume":"26 3","pages":"28"},"PeriodicalIF":1.4000,"publicationDate":"2025-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell and Tissue Banking","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10561-025-10177-0","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
To compare the differences in biological and biomechanical characteristics of cadaver tendon treated by deep freezing, 95wt.% ethanol, tributyl phosphate (TBP), and sodium dodecyl sulfate (SDS) respectively. A total of 50 fresh tendon specimens were randomly divided into five groups, and four groups were treated with deep freezing (- 80 °C), 95wt.% ethanol, 1% TBP, or 1% SDS, respectively. Hematoxylin-eosin (HE), toluidine blue (TB) and 4',6-diamidino-2-phenylindole (DAPI) staining, and transmission/scanning electron microscope observations were performed. Then, cyclic creep and tensile tests were conducted to investigate the biomechanical properties. The content of residual DNA was tested. The HE, TB and DAPI staining showed a significant decrease in tendon cells following treatments, compared with fresh specimens. SDS, TBP, alcohol can almost completely decellularize the tendon, and deep-frozen group remained a few number of tendon cells. The residual DNA content was significantly lowered, with an average percentage of 50.97%, 79.16%, 88.91% and 72.56%, for groups of deep freezing, alcohol, TBP and SDS, respectively. The arrangement of collagen fibers was significantly disrupted, and the gap between fibers was widened, following treatments by alcohol, TBP and SDS. However, the biomechanical properties were generally similar among the five groups, with significantly lowered cyclic creep for ethanol group and lowered Young's modulus for SDS group exclusively. The four treatments can effectively reduce the number of residual cells and DNA content. Among them, cryogenic treatment has almost no damage to tendon histology and biomechanics, while ethanol, SDS and TBP decellularization methods cause different degrees of damage.
期刊介绍:
Cell and Tissue Banking provides a forum for disseminating information to scientists and clinicians involved in the banking and transplantation of cells and tissues. Cell and Tissue Banking is an international, peer-reviewed journal that publishes original papers in the following areas:
basic research concerning general aspects of tissue banking such as quality assurance and control of banked cells/tissues, effects of preservation and sterilisation methods on cells/tissues, biotechnology, etc.; clinical applications of banked cells/tissues; standards of practice in procurement, processing, storage and distribution of cells/tissues; ethical issues; medico-legal issues.