Carbon reduction strategies for logistics based on emission prediction under multi-scenarios in coastal developed region.

IF 3.9 3区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES
Junyu Chen, Yan Zhu, Shengnan Wu, Chuanming Yang, Huimin Wang
{"title":"Carbon reduction strategies for logistics based on emission prediction under multi-scenarios in coastal developed region.","authors":"Junyu Chen, Yan Zhu, Shengnan Wu, Chuanming Yang, Huimin Wang","doi":"10.1186/s13021-025-00295-3","DOIUrl":null,"url":null,"abstract":"<p><p>The differences in logistics carbon emission and carbon absorption in different areas lead to potential conflicts in the green development of regional logistics. The Yangtze River Delta (YRD) in China is a critical coastal developed region for economic integration development and opening up, with logistics playing a substantial role in energy consumption and carbon emissions. Therefore, addressing the low-carbon transformation of logistics in the YRD is a matter of great concern. The framework of carbon balance accounting and prediction of logistics consist of 'basic accounting-factor analysis-prediction simulation' is constructed. Then, this study accounts the logistics carbon emissions (LCE) and logistics carbon capacity (LCC) in the four subregions (Shanghai, Jiangsu, Zhejiang and Anhui) from 2010 to 2021. Estimates the influencing factors of LCE through the geographically and Temporally Weighted Regression model (GTWR). Then, constructs the prediction model for the logistics carbon balance statue based on System Dynamics (SD) structure under four single-factor scenarios and two cross-factor scenarios from 2022 to 2030. Results showed that: (1) The logistics carbon deficit in the YRD is prominent. And the four sub-regions show different spatio-temporal evolution characteristics. (2) The influences of economic level and technical level on LCE are particularly obvious and also has spatio-temporal heterogeneity. (3) There is a trade-off between the pursuit of economic development and carbon emission control. S1 and S2 will continue to witness the increase of logistics carbon pollution. Under S3-S4, the effect of LCE reduction is relatively weak. S5 shows a significant carbon reduction effect, S6 could achieve a good balance between economic development and carbon emissions. (4) Promote the reform of transportation from highway to railway, ensure access to affordable and clean energy for logistic, promote the coordinated carbon reduction of regional logistics and synchronous construction of ecological and artificial carbon pool based on the conditions of developed coastal areas could be feasible paths to achieve carbon balance for YRD.</p>","PeriodicalId":505,"journal":{"name":"Carbon Balance and Management","volume":"20 1","pages":"13"},"PeriodicalIF":3.9000,"publicationDate":"2025-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12139084/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Balance and Management","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1186/s13021-025-00295-3","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The differences in logistics carbon emission and carbon absorption in different areas lead to potential conflicts in the green development of regional logistics. The Yangtze River Delta (YRD) in China is a critical coastal developed region for economic integration development and opening up, with logistics playing a substantial role in energy consumption and carbon emissions. Therefore, addressing the low-carbon transformation of logistics in the YRD is a matter of great concern. The framework of carbon balance accounting and prediction of logistics consist of 'basic accounting-factor analysis-prediction simulation' is constructed. Then, this study accounts the logistics carbon emissions (LCE) and logistics carbon capacity (LCC) in the four subregions (Shanghai, Jiangsu, Zhejiang and Anhui) from 2010 to 2021. Estimates the influencing factors of LCE through the geographically and Temporally Weighted Regression model (GTWR). Then, constructs the prediction model for the logistics carbon balance statue based on System Dynamics (SD) structure under four single-factor scenarios and two cross-factor scenarios from 2022 to 2030. Results showed that: (1) The logistics carbon deficit in the YRD is prominent. And the four sub-regions show different spatio-temporal evolution characteristics. (2) The influences of economic level and technical level on LCE are particularly obvious and also has spatio-temporal heterogeneity. (3) There is a trade-off between the pursuit of economic development and carbon emission control. S1 and S2 will continue to witness the increase of logistics carbon pollution. Under S3-S4, the effect of LCE reduction is relatively weak. S5 shows a significant carbon reduction effect, S6 could achieve a good balance between economic development and carbon emissions. (4) Promote the reform of transportation from highway to railway, ensure access to affordable and clean energy for logistic, promote the coordinated carbon reduction of regional logistics and synchronous construction of ecological and artificial carbon pool based on the conditions of developed coastal areas could be feasible paths to achieve carbon balance for YRD.

沿海发达地区多情景下基于排放预测的物流碳减排策略
不同地区物流碳排放和碳吸收的差异导致了区域物流绿色发展的潜在冲突。长三角是中国经济一体化发展和对外开放的重要沿海发达地区,物流在能源消耗和碳排放中占有重要地位。因此,解决长三角物流的低碳转型是一个非常值得关注的问题。构建了“基础核算-因素分析-预测模拟”的物流碳平衡核算与预测框架。然后,对2010 - 2021年上海、江苏、浙江和安徽四次区域的物流碳排放(LCE)和物流碳容量(LCC)进行了研究。通过地理和时间加权回归模型(GTWR)估计LCE的影响因素。然后,构建了2022 - 2030年4种单因素情景和2种交叉因素情景下基于系统动力学(SD)结构的物流碳平衡状况预测模型。结果表明:(1)长三角地区物流碳赤字突出。4个子区域呈现出不同的时空演化特征。(2)经济水平和技术水平对土地利用效率的影响尤为明显,且具有时空异质性。(3)追求经济发展与控制碳排放之间存在权衡关系。S1和S2的物流碳污染将继续增加。在s3 ~ s4下,LCE的还原作用相对较弱。S5表现出显著的减碳效果,S6能够实现经济发展与碳排放的良好平衡。(4)推进交通运输由公路向铁路的转变,确保物流获得负担得起的清洁能源,促进区域物流协同减碳,结合沿海发达地区的情况同步建设生态碳库和人工碳库,是长三角实现碳平衡的可行路径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Carbon Balance and Management
Carbon Balance and Management Environmental Science-Management, Monitoring, Policy and Law
CiteScore
7.60
自引率
0.00%
发文量
17
审稿时长
14 weeks
期刊介绍: Carbon Balance and Management is an open access, peer-reviewed online journal that encompasses all aspects of research aimed at developing a comprehensive policy relevant to the understanding of the global carbon cycle. The global carbon cycle involves important couplings between climate, atmospheric CO2 and the terrestrial and oceanic biospheres. The current transformation of the carbon cycle due to changes in climate and atmospheric composition is widely recognized as potentially dangerous for the biosphere and for the well-being of humankind, and therefore monitoring, understanding and predicting the evolution of the carbon cycle in the context of the whole biosphere (both terrestrial and marine) is a challenge to the scientific community. This demands interdisciplinary research and new approaches for studying geographical and temporal distributions of carbon pools and fluxes, control and feedback mechanisms of the carbon-climate system, points of intervention and windows of opportunity for managing the carbon-climate-human system. Carbon Balance and Management is a medium for researchers in the field to convey the results of their research across disciplinary boundaries. Through this dissemination of research, the journal aims to support the work of the Intergovernmental Panel for Climate Change (IPCC) and to provide governmental and non-governmental organizations with instantaneous access to continually emerging knowledge, including paradigm shifts and consensual views.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信