{"title":"Nanocarrier-based Drug Delivery Systems to Enhance Antimicrobial Photodynamic Therapy in Dental Applications: A Review.","authors":"Negar Ebrahimi, Alireza Ranjbar, Sima Shahabi, Shima Afrasiabi","doi":"10.1208/s12249-025-03155-y","DOIUrl":null,"url":null,"abstract":"<p><p>Antimicrobial resistance and oral dysbiosis often reduce the efficacy of conventional antimicrobial treatments. In addition, poor permeability and insufficient accumulation of therapeutic agents in biofilms are the main causes of failure in the treatment of oral infections. Antimicrobial photodynamic therapy (PDT) is a versatile therapeutic approach that uses light-activated photosensitizers to fight bacterial infections. When irradiated with light of a specific wavelength, photosensitizers generate reactive oxygen species that selectively damage microbial cells. However, most photosensitizers are poorly soluble in water, which limits their clinical application. Nanotechnology offers a promising solution by incorporating nanocarriers into PDT. Nanocarriers can play a crucial role in improving PDT by overcoming the limitations of conventional photosensitizers. They can encapsulate photosensitizers, protect them from premature degradation, and improve their penetration and delivery to target sites. In this review, different drug delivery systems based on nanocarriers are investigated to improve the efficacy of PDT in dental applications.</p>","PeriodicalId":6925,"journal":{"name":"AAPS PharmSciTech","volume":"26 5","pages":"160"},"PeriodicalIF":3.4000,"publicationDate":"2025-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AAPS PharmSciTech","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1208/s12249-025-03155-y","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Antimicrobial resistance and oral dysbiosis often reduce the efficacy of conventional antimicrobial treatments. In addition, poor permeability and insufficient accumulation of therapeutic agents in biofilms are the main causes of failure in the treatment of oral infections. Antimicrobial photodynamic therapy (PDT) is a versatile therapeutic approach that uses light-activated photosensitizers to fight bacterial infections. When irradiated with light of a specific wavelength, photosensitizers generate reactive oxygen species that selectively damage microbial cells. However, most photosensitizers are poorly soluble in water, which limits their clinical application. Nanotechnology offers a promising solution by incorporating nanocarriers into PDT. Nanocarriers can play a crucial role in improving PDT by overcoming the limitations of conventional photosensitizers. They can encapsulate photosensitizers, protect them from premature degradation, and improve their penetration and delivery to target sites. In this review, different drug delivery systems based on nanocarriers are investigated to improve the efficacy of PDT in dental applications.
期刊介绍:
AAPS PharmSciTech is a peer-reviewed, online-only journal committed to serving those pharmaceutical scientists and engineers interested in the research, development, and evaluation of pharmaceutical dosage forms and delivery systems, including drugs derived from biotechnology and the manufacturing science pertaining to the commercialization of such dosage forms. Because of its electronic nature, AAPS PharmSciTech aspires to utilize evolving electronic technology to enable faster and diverse mechanisms of information delivery to its readership. Submission of uninvited expert reviews and research articles are welcomed.