Mammalian Tolerance to Amino Acid Heterochirality

IF 2.6 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
ChemBioChem Pub Date : 2025-06-03 DOI:10.1002/cbic.202500273
Sakiko Taniguchi, Kenichiro Adachi, Xuan Tran, Masataka Suzuki, Jumpei Sasabe
{"title":"Mammalian Tolerance to Amino Acid Heterochirality","authors":"Sakiko Taniguchi,&nbsp;Kenichiro Adachi,&nbsp;Xuan Tran,&nbsp;Masataka Suzuki,&nbsp;Jumpei Sasabe","doi":"10.1002/cbic.202500273","DOIUrl":null,"url":null,"abstract":"<p>Organisms use amino acids predominantly in <span>l-</span>configuration. In contrast, a series of studies show that a variety of <span>d-</span>amino acids also occur in mammals, and amino acid homochirality is not complete. Mammals de novo synthesize most amino acids with <span>l-</span>configuration, but serine and aspartate are converted from <span>l-</span> to <span>d-</span>configuration by endogenous enzymes. In addition to endogenous syntheses of <span>d-</span>amino acids, symbiotic bacteria in mammals chiral-convert amino acids, including alanine, glutamate, proline, and leucine in the intestine, creating a heterochiral inner environment. <span>d-</span>amino acids are distributed in distinctive patterns among organs and have physiological roles in the central nervous, endocrine, and immune systems. Mammals manage such diverse <span>d-</span>amino acids with catabolism and excretion into urine at individual levels. In contrast, at the cellular levels an enantioselection mechanism to regulate chiral homeostasis of amino acids has remained unclear. In protein synthesis, the ribosome has a sophisticated system to eliminate <span>d-</span>amino acids, whereas non-ribosomal synthesis also utilizes <span>d-</span>amino acids. Furthermore, amino acid residues in proteins/peptides can be isomerized post-translationally through enzymatic or spontaneous processes. This manuscript overviews how the chiral balance of free amino acids or residues in proteins is maintained in mammals at the individual and cellular levels.</p>","PeriodicalId":140,"journal":{"name":"ChemBioChem","volume":"26 13","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cbic.202500273","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemBioChem","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cbic.202500273","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Organisms use amino acids predominantly in l-configuration. In contrast, a series of studies show that a variety of d-amino acids also occur in mammals, and amino acid homochirality is not complete. Mammals de novo synthesize most amino acids with l-configuration, but serine and aspartate are converted from l- to d-configuration by endogenous enzymes. In addition to endogenous syntheses of d-amino acids, symbiotic bacteria in mammals chiral-convert amino acids, including alanine, glutamate, proline, and leucine in the intestine, creating a heterochiral inner environment. d-amino acids are distributed in distinctive patterns among organs and have physiological roles in the central nervous, endocrine, and immune systems. Mammals manage such diverse d-amino acids with catabolism and excretion into urine at individual levels. In contrast, at the cellular levels an enantioselection mechanism to regulate chiral homeostasis of amino acids has remained unclear. In protein synthesis, the ribosome has a sophisticated system to eliminate d-amino acids, whereas non-ribosomal synthesis also utilizes d-amino acids. Furthermore, amino acid residues in proteins/peptides can be isomerized post-translationally through enzymatic or spontaneous processes. This manuscript overviews how the chiral balance of free amino acids or residues in proteins is maintained in mammals at the individual and cellular levels.

Abstract Image

哺乳动物对氨基酸杂手性的耐受性。
生物体主要使用l型氨基酸。另一方面,一系列研究表明,哺乳动物体内也存在多种d-氨基酸,且氨基酸的同手性并不完全。哺乳动物从头合成大多数l-构型的氨基酸,但丝氨酸和天冬氨酸由内源性酶从l-构型转化为d-构型。除了内源性合成d-氨基酸外,哺乳动物中的共生细菌手性转化氨基酸,包括肠内的丙氨酸、谷氨酸、脯氨酸和亮氨酸,创造了一个异手性的内环境。d-氨基酸在器官中以独特的模式分布,在中枢神经、内分泌和免疫系统中具有生理作用。哺乳动物在个体水平上通过分解代谢和排泄到尿液中来管理这些不同的d-氨基酸。另一方面,在细胞水平上,调节氨基酸手性稳态的对映体选择机制尚不清楚。在蛋白质合成中,核糖体有一个复杂的系统来消除d-氨基酸,而非核糖体合成也利用d-氨基酸。此外,蛋白质/多肽中的氨基酸残基可以在翻译后通过酶或自发过程异构化。这篇手稿概述了如何手性平衡的游离氨基酸或残基的蛋白质是维持在个体和细胞水平的哺乳动物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ChemBioChem
ChemBioChem 生物-生化与分子生物学
CiteScore
6.10
自引率
3.10%
发文量
407
审稿时长
1 months
期刊介绍: ChemBioChem (Impact Factor 2018: 2.641) publishes important breakthroughs across all areas at the interface of chemistry and biology, including the fields of chemical biology, bioorganic chemistry, bioinorganic chemistry, synthetic biology, biocatalysis, bionanotechnology, and biomaterials. It is published on behalf of Chemistry Europe, an association of 16 European chemical societies, and supported by the Asian Chemical Editorial Society (ACES).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信