An Ultrafast Charge-Driven Topological Intercalation Prelithiation Strategy for Carbon-Silicon Composite Anodes.

IF 14.1 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Yifan Zhao, Liang Zhang, Qian Liu, Mingyu Liu, Jiajia Shen, Hui Ma, Juejing Dai, Xi Yu, Jianhua Yan
{"title":"An Ultrafast Charge-Driven Topological Intercalation Prelithiation Strategy for Carbon-Silicon Composite Anodes.","authors":"Yifan Zhao, Liang Zhang, Qian Liu, Mingyu Liu, Jiajia Shen, Hui Ma, Juejing Dai, Xi Yu, Jianhua Yan","doi":"10.1002/advs.202506636","DOIUrl":null,"url":null,"abstract":"<p><p>Prelithiation emerges as an effective technique to enhance the initial Coulombic efficiency (ICE) and cycling stability of silicon oxide based carbon composite (C/SiO<sub>x</sub>) anodes, yet traditional approaches remain plagued by sluggish kinetics, cumbersome procedures, safety hazards, and inadequate precision. Here, a facile topological intercalation prelithiation method capable of forming a robust and homogeneous solid electrolyte interface (SEI) network on porous C/SiO<sub>x</sub> nanofiber anodes in merely 30 s is reported. Through constructing three charge-driven topology models derived from flexible SiO<sub>x</sub>/porous carbon nanofiber (SiO<sub>x</sub>/PCNF) films, the mechanism of this fast Li<sup>+</sup>-intercalation process is unraveled. Abundant surface defects on SiO<sub>x</sub>/PCNF enhance lithium salt adsorption and dissociation, while the active solvated Li<sup>+</sup>-ions can quickly intercalate into SiO<sub>x</sub>/PCNF along an orientation pathway, realizing a high ICE of 99.44%. This topological prelithiation forges a 3D inorganic-rich SEI architecture that dualizes functionality: It curtails electrolyte degradation while alleviating volume fluctuation and mechanical stress, while enabling precision Li<sup>+</sup>-ion replenishment. This topochemical paradigm not only achieves ICE reinforcement and cycling resilience (1000 stable cycles), but also slashes prelithiation duration by orders of magnitude.</p>","PeriodicalId":117,"journal":{"name":"Advanced Science","volume":" ","pages":"e06636"},"PeriodicalIF":14.1000,"publicationDate":"2025-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/advs.202506636","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Prelithiation emerges as an effective technique to enhance the initial Coulombic efficiency (ICE) and cycling stability of silicon oxide based carbon composite (C/SiOx) anodes, yet traditional approaches remain plagued by sluggish kinetics, cumbersome procedures, safety hazards, and inadequate precision. Here, a facile topological intercalation prelithiation method capable of forming a robust and homogeneous solid electrolyte interface (SEI) network on porous C/SiOx nanofiber anodes in merely 30 s is reported. Through constructing three charge-driven topology models derived from flexible SiOx/porous carbon nanofiber (SiOx/PCNF) films, the mechanism of this fast Li+-intercalation process is unraveled. Abundant surface defects on SiOx/PCNF enhance lithium salt adsorption and dissociation, while the active solvated Li+-ions can quickly intercalate into SiOx/PCNF along an orientation pathway, realizing a high ICE of 99.44%. This topological prelithiation forges a 3D inorganic-rich SEI architecture that dualizes functionality: It curtails electrolyte degradation while alleviating volume fluctuation and mechanical stress, while enabling precision Li+-ion replenishment. This topochemical paradigm not only achieves ICE reinforcement and cycling resilience (1000 stable cycles), but also slashes prelithiation duration by orders of magnitude.

碳硅复合材料阳极的超快电荷驱动拓扑插层预锂化策略。
预锂化是提高氧化硅基碳复合材料(C/SiOx)阳极初始库仑效率(ICE)和循环稳定性的一种有效技术,但传统的预锂化方法仍然受到动力学缓慢、程序繁琐、安全隐患和精度不足的困扰。本文报道了一种简单的拓扑嵌入预锂化方法,该方法能够在30秒内在多孔C/SiOx纳米纤维阳极上形成坚固且均匀的固体电解质界面(SEI)网络。通过构建柔性SiOx/多孔碳纳米纤维(SiOx/PCNF)薄膜的三个电荷驱动拓扑模型,揭示了Li+快速插层过程的机理。SiOx/PCNF表面丰富的缺陷促进了锂盐的吸附和解离,而活性溶剂化Li+离子可以沿取向途径快速插入到SiOx/PCNF中,实现99.44%的高ICE。这种拓扑预锂化形成了一种3D富无机SEI结构,具有双重功能:它减少了电解质降解,同时减轻了体积波动和机械应力,同时实现了精确的Li+离子补充。这种拓扑化学模式不仅实现了ICE强化和循环弹性(1000个稳定循环),而且还将预锂化持续时间缩短了几个数量级。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Science
Advanced Science CHEMISTRY, MULTIDISCIPLINARYNANOSCIENCE &-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
18.90
自引率
2.60%
发文量
1602
审稿时长
1.9 months
期刊介绍: Advanced Science is a prestigious open access journal that focuses on interdisciplinary research in materials science, physics, chemistry, medical and life sciences, and engineering. The journal aims to promote cutting-edge research by employing a rigorous and impartial review process. It is committed to presenting research articles with the highest quality production standards, ensuring maximum accessibility of top scientific findings. With its vibrant and innovative publication platform, Advanced Science seeks to revolutionize the dissemination and organization of scientific knowledge.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信