{"title":"High electrical conductivity in directionally polymerized C60 nanowires by grazing incidence of single particles†","authors":"Masaki Nobuoka, Shugo Sakaguchi, Minori Kawata, Akie Taguchi, Kosuke Kishida, Yusuke Tsutsui, Masayuki Suda, Haruka Inoue, Akira Idesaki, Tetsuya Yamaki and Shu Seki","doi":"10.1039/D5NH00228A","DOIUrl":null,"url":null,"abstract":"<p >As organic electronics continue to evolve, there is a growing demand for nanometer-scale microfabrication techniques for organic semiconductors. Although precise 2D alignment and 3D integration are essential for future device applications, significant challenges remain, particularly with organic materials. Here, we demonstrate the successful fabrication of highly oriented nanowire arrays of fullerene (C<small><sub>60</sub></small>) <em>via</em> directional polymerization, mediated by grazing incidence of high-energy charged particles. These C<small><sub>60</sub></small> nanowires exhibit remarkably high electrical conductivity, comparable to that of undoped germanium, which is attributed to a unique polymerization process induced by particle irradiation. Field-effect transistor (FET) measurements revealed that electrons serve as the primary charge carriers in the nanowires. Temperature-dependent electrical measurements further indicate that the conduction mechanism follows a thermally activated hopping process, rather than conventional band conduction, reflecting the amorphous and crosslinked nature of the polymerized nanowires. Furthermore, a measurable change in conductivity upon nitrobenzene adsorption suggests their potential application as highly sensitive, electron-based organic gas sensors.</p>","PeriodicalId":93,"journal":{"name":"Nanoscale Horizons","volume":" 7","pages":" 1345-1353"},"PeriodicalIF":6.6000,"publicationDate":"2025-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/nh/d5nh00228a?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale Horizons","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/nh/d5nh00228a","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
As organic electronics continue to evolve, there is a growing demand for nanometer-scale microfabrication techniques for organic semiconductors. Although precise 2D alignment and 3D integration are essential for future device applications, significant challenges remain, particularly with organic materials. Here, we demonstrate the successful fabrication of highly oriented nanowire arrays of fullerene (C60) via directional polymerization, mediated by grazing incidence of high-energy charged particles. These C60 nanowires exhibit remarkably high electrical conductivity, comparable to that of undoped germanium, which is attributed to a unique polymerization process induced by particle irradiation. Field-effect transistor (FET) measurements revealed that electrons serve as the primary charge carriers in the nanowires. Temperature-dependent electrical measurements further indicate that the conduction mechanism follows a thermally activated hopping process, rather than conventional band conduction, reflecting the amorphous and crosslinked nature of the polymerized nanowires. Furthermore, a measurable change in conductivity upon nitrobenzene adsorption suggests their potential application as highly sensitive, electron-based organic gas sensors.
期刊介绍:
Nanoscale Horizons stands out as a premier journal for publishing exceptionally high-quality and innovative nanoscience and nanotechnology. The emphasis lies on original research that introduces a new concept or a novel perspective (a conceptual advance), prioritizing this over reporting technological improvements. Nevertheless, outstanding articles showcasing truly groundbreaking developments, including record-breaking performance, may also find a place in the journal. Published work must be of substantial general interest to our broad and diverse readership across the nanoscience and nanotechnology community.