Chain-length engineered interfacial architecture enables dendrite-free aqueous zinc-ion batteries.

IF 12.2 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Jiaqi Yang, Zhengxiao Ji, Miaoran Deng, Chaocang Weng, Xusheng Wang, Min Xu, Likun Pan, Jinliang Li
{"title":"Chain-length engineered interfacial architecture enables dendrite-free aqueous zinc-ion batteries.","authors":"Jiaqi Yang, Zhengxiao Ji, Miaoran Deng, Chaocang Weng, Xusheng Wang, Min Xu, Likun Pan, Jinliang Li","doi":"10.1039/d5mh00668f","DOIUrl":null,"url":null,"abstract":"<p><p>The growth of zinc dendrites in aqueous zinc-ion batteries (AZIBs) significantly compromises the cycling stability and operational lifespan, especially under prolonged charge-discharge cycles at high load, where dendrite formation poses serious safety risks. In this work, we propose a \"critical network equilibrium\" mechanism enabled by molecular weight-optimized dextran (DEX). Specifically, DEX with a molecular weight of 70 000 (D7) reaches a stabilization threshold in the ZnSO<sub>4</sub> electrolyte, where it self-assembles into an adaptive interfacial architecture. This dynamic network serves as an intelligent protective layer, effectively shielding the Zn anode from H<sup>+</sup> corrosion, optimizing the solvation shell to reinforce interfacial stability, and ensuring uniform Zn<sup>2+</sup> deposition through adaptive restructuring. Moreover, the D7-mediated interface preferentially directs Zn<sup>2+</sup> deposition onto the Zn(002) plane, while inhibiting disordered growth on the Zn(101) plane. Experimental results indicate that the Zn//Zn cell modified with D7 exhibits an ultra-stable lifespan of up to 4800 h at 1 mA cm<sup>-2</sup>/1 mA h cm<sup>-2</sup>, while the Zn//MnO<sub>2</sub> full-cell retains 83% of its capacity after 3000 cycles. We believe that our innovative strategy for optimizing electrolytes will offer new insights for prolonging the operational lifespan of AZIBs.</p>","PeriodicalId":87,"journal":{"name":"Materials Horizons","volume":" ","pages":""},"PeriodicalIF":12.2000,"publicationDate":"2025-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Horizons","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d5mh00668f","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The growth of zinc dendrites in aqueous zinc-ion batteries (AZIBs) significantly compromises the cycling stability and operational lifespan, especially under prolonged charge-discharge cycles at high load, where dendrite formation poses serious safety risks. In this work, we propose a "critical network equilibrium" mechanism enabled by molecular weight-optimized dextran (DEX). Specifically, DEX with a molecular weight of 70 000 (D7) reaches a stabilization threshold in the ZnSO4 electrolyte, where it self-assembles into an adaptive interfacial architecture. This dynamic network serves as an intelligent protective layer, effectively shielding the Zn anode from H+ corrosion, optimizing the solvation shell to reinforce interfacial stability, and ensuring uniform Zn2+ deposition through adaptive restructuring. Moreover, the D7-mediated interface preferentially directs Zn2+ deposition onto the Zn(002) plane, while inhibiting disordered growth on the Zn(101) plane. Experimental results indicate that the Zn//Zn cell modified with D7 exhibits an ultra-stable lifespan of up to 4800 h at 1 mA cm-2/1 mA h cm-2, while the Zn//MnO2 full-cell retains 83% of its capacity after 3000 cycles. We believe that our innovative strategy for optimizing electrolytes will offer new insights for prolonging the operational lifespan of AZIBs.

链长工程界面结构使无枝晶水性锌离子电池成为可能。
水溶液锌离子电池(azib)中锌枝晶的生长会严重影响电池的循环稳定性和使用寿命,特别是在高负载下长时间充放电循环时,枝晶的形成会带来严重的安全隐患。在这项工作中,我们提出了一种由分子量优化的葡聚糖(DEX)实现的“临界网络平衡”机制。具体来说,分子量为70000 (D7)的DEX在ZnSO4电解质中达到稳定阈值,在那里它自组装成自适应的界面结构。该动态网络作为一个智能保护层,有效地保护Zn阳极免受H+腐蚀,优化溶剂化壳以增强界面稳定性,并通过自适应重组确保均匀的Zn2+沉积。此外,d7介导的界面优先引导Zn2+沉积到Zn(002)平面上,同时抑制Zn(101)平面上的无序生长。实验结果表明,D7修饰的Zn//Zn电池在1 mA cm-2/1 mA h cm-2下的超稳定寿命可达4800 h,而Zn//MnO2全电池在3000次循环后仍能保持83%的容量。我们相信,我们优化电解质的创新策略将为延长azib的使用寿命提供新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Materials Horizons
Materials Horizons CHEMISTRY, MULTIDISCIPLINARY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
18.90
自引率
2.30%
发文量
306
审稿时长
1.3 months
期刊介绍: Materials Horizons is a leading journal in materials science that focuses on publishing exceptionally high-quality and innovative research. The journal prioritizes original research that introduces new concepts or ways of thinking, rather than solely reporting technological advancements. However, groundbreaking articles featuring record-breaking material performance may also be published. To be considered for publication, the work must be of significant interest to our community-spanning readership. Starting from 2021, all articles published in Materials Horizons will be indexed in MEDLINE©. The journal publishes various types of articles, including Communications, Reviews, Opinion pieces, Focus articles, and Comments. It serves as a core journal for researchers from academia, government, and industry across all areas of materials research. Materials Horizons is a Transformative Journal and compliant with Plan S. It has an impact factor of 13.3 and is indexed in MEDLINE.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信