Rodrigo Fernández-Quevedo García, Enrique Chacón, Pedro Tarazona and Chantal Valeriani
{"title":"Dynamics and rupture of doped motility induced phase separation†","authors":"Rodrigo Fernández-Quevedo García, Enrique Chacón, Pedro Tarazona and Chantal Valeriani","doi":"10.1039/D5SM00134J","DOIUrl":null,"url":null,"abstract":"<p >Adding a small amount of passive (Brownian) particles to a two-dimensional dense suspension of repulsive active Brownian particles does not affect the appearance of a motility-induced phase separation into a dense and a dilute phase, caused by the persistence of the active particles' direction of motion. Unlike a purely active suspension, the dense slab formed in an elongated system of a passive–active mixture may show, over long periods of time, a stable and well-defined propagation of the interfaces, because of the symmetry breaking caused by the depletion of passive particles on one side of the slab. We investigate these dynamical structures <em>via</em> average density profile calculations, revealing an asymmetry between the two interfaces, and enabling a kinetic analysis of the slab movement. The apparent movement of the dense slab is not a pure source/sink effect, nor a rigid displacement of all the particles, but a self-sustained combination of both effects. Furthermore, we analyse the specific fluctuations that produce, cancel and abruptly reverse the slab motion.</p>","PeriodicalId":103,"journal":{"name":"Soft Matter","volume":" 27","pages":" 5413-5422"},"PeriodicalIF":2.8000,"publicationDate":"2025-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/sm/d5sm00134j?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soft Matter","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/sm/d5sm00134j","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Adding a small amount of passive (Brownian) particles to a two-dimensional dense suspension of repulsive active Brownian particles does not affect the appearance of a motility-induced phase separation into a dense and a dilute phase, caused by the persistence of the active particles' direction of motion. Unlike a purely active suspension, the dense slab formed in an elongated system of a passive–active mixture may show, over long periods of time, a stable and well-defined propagation of the interfaces, because of the symmetry breaking caused by the depletion of passive particles on one side of the slab. We investigate these dynamical structures via average density profile calculations, revealing an asymmetry between the two interfaces, and enabling a kinetic analysis of the slab movement. The apparent movement of the dense slab is not a pure source/sink effect, nor a rigid displacement of all the particles, but a self-sustained combination of both effects. Furthermore, we analyse the specific fluctuations that produce, cancel and abruptly reverse the slab motion.
期刊介绍:
Soft Matter is an international journal published by the Royal Society of Chemistry using Engineering-Materials Science: A Synthesis as its research focus. It publishes original research articles, review articles, and synthesis articles related to this field, reporting the latest discoveries in the relevant theoretical, practical, and applied disciplines in a timely manner, and aims to promote the rapid exchange of scientific information in this subject area. The journal is an open access journal. The journal is an open access journal and has not been placed on the alert list in the last three years.