{"title":"Dual-Stage Propulsion Strategy for Microalgae-Based Biohybrid Microrobots.","authors":"Yumin Liu, Kunming Xing, Yuyan Li, Kexin Liu, Guangyao Tan, Shusheng Zhang, Pengfei Shi, Yingnan Sun","doi":"10.1021/acsami.5c09537","DOIUrl":null,"url":null,"abstract":"<p><p>Biohybrid microrobots, based on swimming microalgae, offer outstanding self-propulsion and functionalization capabilities, making them promising platforms for cargo loading and delivery. However, current technologies predominantly focus on in vitro nanodrug transport, lacking an integrated strategy for the efficient capture and directional transport of large microscale cargo, particularly for biological targets. Here, we propose a dual-stage propulsion strategy for biohybrid microrobots, enabling the coupled capture and directional transport of large targets. Inspired by the multistage propulsion of rockets, the microrobots first utilize the autonomous motility of microalgae to establish a self-propulsion-driven primary phase. Surface functionalization creates a dynamic 3D biomimetic capture interface, enhancing the target capture efficiency. Subsequently, an external magnetic field activates a secondary propulsion mechanism, enabling precise directional transport. As a proof of concept, <i>Chlamydomonas reinhardtii</i> was employed as the biological carrier and noninvasively integrated with 2 μm magnetic beads to construct dual-actuated biohybrid microrobots. This design preserved the natural motility of the microalgae while providing abundant aptamers and strong magnetic actuation. Using 20 μm polystyrene microspheres and circulating tumor cells as model targets, we successfully demonstrated high-efficiency capture (up to 93%) and directional transport (14 μm/s) of large microscale targets, highlighting the potential of this strategy for biomedical, environmental, and analytical applications.</p>","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":" ","pages":""},"PeriodicalIF":8.3000,"publicationDate":"2025-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsami.5c09537","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Biohybrid microrobots, based on swimming microalgae, offer outstanding self-propulsion and functionalization capabilities, making them promising platforms for cargo loading and delivery. However, current technologies predominantly focus on in vitro nanodrug transport, lacking an integrated strategy for the efficient capture and directional transport of large microscale cargo, particularly for biological targets. Here, we propose a dual-stage propulsion strategy for biohybrid microrobots, enabling the coupled capture and directional transport of large targets. Inspired by the multistage propulsion of rockets, the microrobots first utilize the autonomous motility of microalgae to establish a self-propulsion-driven primary phase. Surface functionalization creates a dynamic 3D biomimetic capture interface, enhancing the target capture efficiency. Subsequently, an external magnetic field activates a secondary propulsion mechanism, enabling precise directional transport. As a proof of concept, Chlamydomonas reinhardtii was employed as the biological carrier and noninvasively integrated with 2 μm magnetic beads to construct dual-actuated biohybrid microrobots. This design preserved the natural motility of the microalgae while providing abundant aptamers and strong magnetic actuation. Using 20 μm polystyrene microspheres and circulating tumor cells as model targets, we successfully demonstrated high-efficiency capture (up to 93%) and directional transport (14 μm/s) of large microscale targets, highlighting the potential of this strategy for biomedical, environmental, and analytical applications.
期刊介绍:
ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.