Hyeyoung Nam, Anirban Kundu, Suman Karki, Richard L. Kirkman, Darshan S. Chandrashekar, Jeremy B. Foote, Guofang Zhang, Wentao He, Sooryanarayana Varambally, Han-Fei Ding, Sunil Sudarshan
{"title":"HDAC7 promotes renal cancer progression by reprogramming branched-chain amino acid metabolism","authors":"Hyeyoung Nam, Anirban Kundu, Suman Karki, Richard L. Kirkman, Darshan S. Chandrashekar, Jeremy B. Foote, Guofang Zhang, Wentao He, Sooryanarayana Varambally, Han-Fei Ding, Sunil Sudarshan","doi":"","DOIUrl":null,"url":null,"abstract":"<div >Clear cell renal cell carcinoma (ccRCC), the most common subtype of kidney cancer, exhibits notable metabolic reprogramming. We previously reported elevated HDAC7, a class II histone deacetylase, in ccRCC. Here, we demonstrate that HDAC7 promotes aggressive phenotypes and in vivo tumor progression in RCC. HDAC7 suppresses the expression of genes mediating branched-chain amino acid (BCAA) catabolism. Notably, lower expression of BCAA catabolism genes is strongly associated with worsened survival in ccRCC. Suppression of BCAA catabolism promotes expression of SNAIL1, a central mediator of aggressive phenotypes including migration and invasion. HDAC7-mediated suppression of the BCAA catabolic program promotes <i>SNAI1</i> messenger RNA transcription via NOTCH signaling activation. Collectively, our findings provide innovative insights into the role of metabolic remodeling in ccRCC tumor progression.</div>","PeriodicalId":21609,"journal":{"name":"Science Advances","volume":"11 23","pages":""},"PeriodicalIF":12.5000,"publicationDate":"2025-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.science.org/doi/reader/10.1126/sciadv.adt3552","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Advances","FirstCategoryId":"103","ListUrlMain":"https://www.science.org/doi/10.1126/sciadv.adt3552","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Clear cell renal cell carcinoma (ccRCC), the most common subtype of kidney cancer, exhibits notable metabolic reprogramming. We previously reported elevated HDAC7, a class II histone deacetylase, in ccRCC. Here, we demonstrate that HDAC7 promotes aggressive phenotypes and in vivo tumor progression in RCC. HDAC7 suppresses the expression of genes mediating branched-chain amino acid (BCAA) catabolism. Notably, lower expression of BCAA catabolism genes is strongly associated with worsened survival in ccRCC. Suppression of BCAA catabolism promotes expression of SNAIL1, a central mediator of aggressive phenotypes including migration and invasion. HDAC7-mediated suppression of the BCAA catabolic program promotes SNAI1 messenger RNA transcription via NOTCH signaling activation. Collectively, our findings provide innovative insights into the role of metabolic remodeling in ccRCC tumor progression.
期刊介绍:
Science Advances, an open-access journal by AAAS, publishes impactful research in diverse scientific areas. It aims for fair, fast, and expert peer review, providing freely accessible research to readers. Led by distinguished scientists, the journal supports AAAS's mission by extending Science magazine's capacity to identify and promote significant advances. Evolving digital publishing technologies play a crucial role in advancing AAAS's global mission for science communication and benefitting humankind.